
ARI-Armaturen

VÁLVULAS Y PRODUCTOS PARA EL CONTROL DE FLUIDOS

Tecnología Alemana

4

ARI-Armaturen

Una historia de tradición y vanguardia Calidad y seguridad, líderes en I+D Presencia internacional, atención y servicio local Nuestros sectores de mercado

8

VALVULAS DE CONTROL

STEVI® – Válvulas con actuadores neumáticos y eléctricos

PREDU® - PREDEX® - PRESO® – Válvulas auto reguladoras de presión

TEMPTROL® – Válvulas auto reguladoras de temperatura

14

VALVULAS DE AISLAMIENTO

FABA® – Válvulas de interrupción con fuelle
STOBU® – Válvulas de interrupción
ASTRA® – Válvulas de equilibrado de flujo
EUROWEDI® – Válvulas de regulación manual
ZETRIX® – Válvulas de mariposa triple excéntricas
ZEDOX® – Válvulas de mariposa doble excéntricas

ZEDOX® – Válvulas de mariposa doble excentricas **GESA**® - **ZESA**® - **ZIVA**® – Válvulas de mariposa concéntricas **CHECKO**® – Válvulas de retención, filtros y mirillas

28

VALVULAS DE SEGURIDAD

SAFE® – Válvulas de seguridad EN / ASME tobera semi REYCO® – Válvulas de seguridad ASME VIII – NB API 526

32

PURGADORES, ESPECIALIDADES PARA AHORRO ENERGETICO Y SISTEMAS

CONA® – Purgadores de condensado
CODI® – Manifolds de recogida y distribución
CONA® P - CONLIFT® Bomba de impulsión de condensados
CONSYS® - PRESSYS® – Sistema integral

38

VISION GENERAL DEL PROGRAMA ARI

Especificaciones generales de producto y guía de aplicación

ARI-Armaturen Una Historia de Tradición y Vanguardia

Desde el corazón de Westfalia, cuna de la tradición industrial en Alemania, ARI-Armaturen no ha dejado de evolucionar desde su fundación en 1950 hasta convertirse en una Compañía líder en el sector del diseño y fabricación de Válvulas y Productos de Control de Fluidos.

ARI-Armaturen cuenta en la actualidad con 3 modernos centros de fabricación en Alemania (Schloss Holte-Stukenbrock, Holzhausen y Halle) y uno en Houston (EE. UU) con una producción totalmente automatizada de más de 20,000 tipos de producto. ARI-Armaturen es una gran empresa de raíces familiares con más de 1000 empleados en la actualidad liderando el sector internacional con responsabilidad y ética corporativa, así como estricto respeto al medio ambiente.

ARI-ArmaturenCalidad y Seguridad, Líderes en I+D

La Calidad al más alto nivel de seguridad; Compañía Certificada ISO 9001:2015 así como ISO 14000, y todos los productos homologados por Organismos Notificadores Independientes.

ARI-Armaturen asegura la calidad durante todo el proceso, desde el diseño y producción hasta la puesta en marcha del producto en su instalación gracias a ultra modernas herramientas de diseño (elemento finito, simuladores de flujo, métodos de fabricación, 3D.. etc) así como centros automatizados y robots de última generación que aseguran la máxima precisión. Además, para las pruebas y homologaciones cuenta con laboratorios que simulan condiciones de servicio reales. ARI-Armaturen es sinónimo de Calidad y Seguridad para sus instalaciones.

ARI-Armaturen

Presencia Internacional, Atención y Servicio Local

Clientes en más de 60 países confían en las Válvulas ARI para asegurar sus procesos de fabricación, la calidad y precisión son valores esenciales para las industrias internacionales.

ARI-Armaturen está presente en los 5 continentes con 4 plantas de fabricación y 14 filiales propias además de múltiples distribuidores autorizados con capacidad de servicio. Esta amplia cobertura internacional nos permite estar siempre cerca de nuestros usuarios en cualquier parte del mundo. Si bien su negocio se siente respaldado por la potencia de un gran Grupo Multinacional, no menos importante es saber que siempre hay un colaborador local de ARI que entiende sus necesidades, habla su idioma, entrega en el mismo día y está cerca de su negocio para aportarle valor.

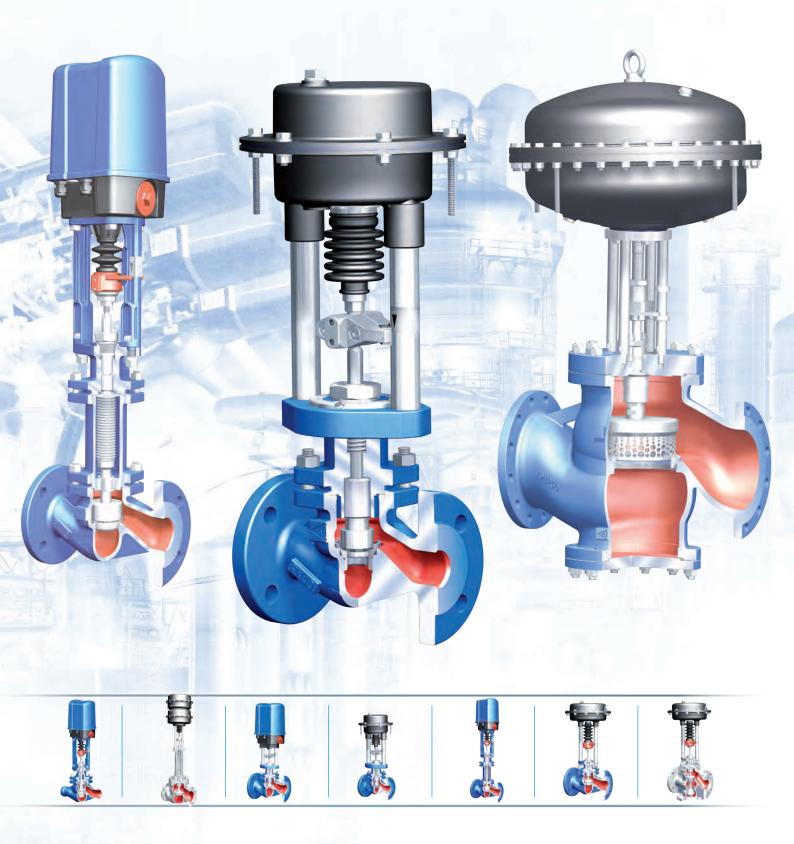
ARMATUREN

ARI-ArmaturenNuestros Sectores de Mercado

ARI-Armaturen está presente con sus productos en la industria de manufactura, industria química, industria naval, construcción de equipos y edificación.

Válvulas idóneas para la gestión del vapor, condensado, fluido térmico, agua sobrecalentada, agua caliente y gas.

ARI-Armaturen está presente con una completa gama de válvulas y productos para el control de fluidos en amplios sectores de la industria y edificación. Todo bajo una misma fabricación y garantía: regulación, cierre, seguridad, purga de condensado, retención y sistemas modulares. En el corazón de la industria, cualquiera que sea el fluido y el sector industrial, las válvulas ARI están trabajando ininterrumpidamente permitiendo que sus procesos sigan adelante y sus productos salgan al mercado.



STEVI®

Válvulas de Control

Válvulas de Control seguras, precisas, fiables y de tecnología modular.

Amplitud de gama para todas las aplicaciones.

Válvulas de Control

Series STEVI®; las válvulas modulares y compactas para todos los niveles de exigencia en la industria de procesos, energía y climatización.

Disponibles con un amplio abanico de diseños de cuerpo (paso recto / 3 vías), conexiones (bridas/soldar), sellado (convencional / fuelle), obturadores (parabólicos, guiados, jaula perforada).

STEVI® Smart – Series 440/441, 425/426 Válvulas de Control estándar para aplicaciones generales.

Diseños diversos de sellado y obturadores. DN 15-500; Rating PN 16-40, paso recto.

STEVI® Vario - Series 448/449

Válvulas de Control versátiles y compactas para aplicaciones en industria y equipos.

Actuador compacto, Diseños diversos de sellado y obturadores.

DN 15-100; Rating PN 16-40, paso recto.

STEVI® Pro - Series 422/462/470/471

Válvulas de Control de altas prestaciones para aplicaciones industriales, Alta presión diferencial, Paso recto, Diseños diversos de sellado y obturadores, internos de alto rendimiento.

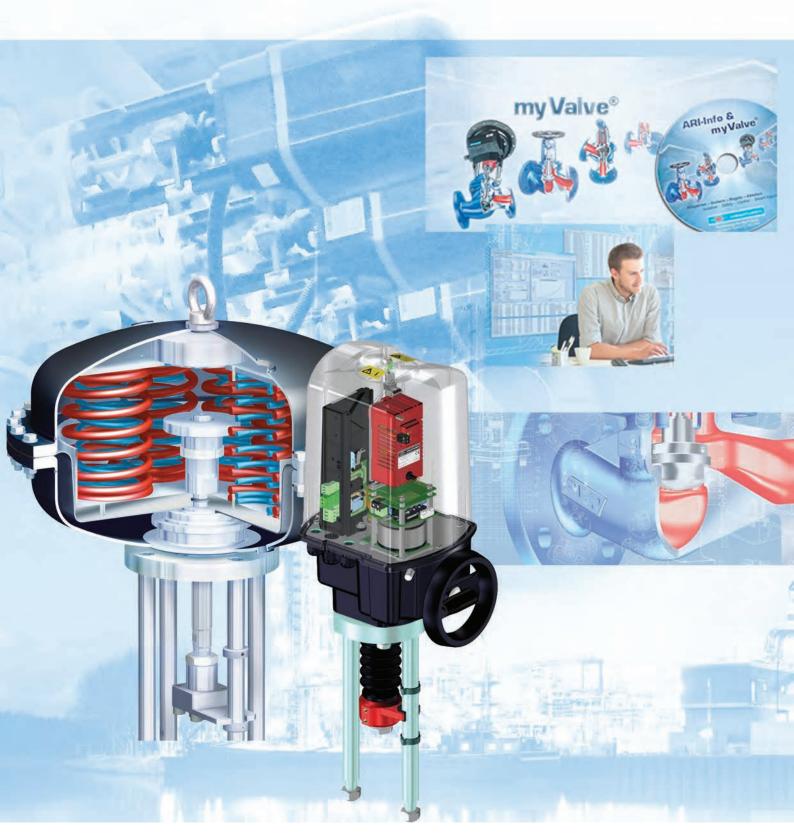
DN 15-250; Rating PN 16-40 / ANSI 150-300#.

Actuadores DP - PREMIO 2G

Actuadores neumáticos de simple efecto con membrana elástica y muelles.

Modelos: DP 30, DP 32, DP 33, DP 34, DP 34T, DP 34Tri, DP 35.

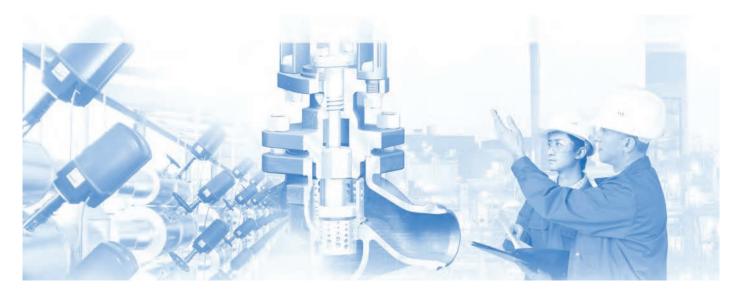
Actuadores eléctricos de última generación, diversos voltajes y accesorios de control incorporados. Modelos: PREMIO, PREMIO-PLUS 2G (2.2KN, 5KN, 12KN, 15KN, 25KN).



PREMIO - DP

STEVI®

Expertos de Control



Actuadores diseño ARI – fabricación propia

Simulación de flujos y pruebas reales en nuestro propio laboratorio de I+D. **myValve**[®]: nuestro programa para el cálculo en todos los procesos de aplicación.

Válvulas de Control

Tecnología de Control con la máxima garantía de diseño e investigación; actuadores compactos, económicos y versátiles para un amplio elenco de aplicación.

ARI STEVI®; las válvulas de control que nos integra en la digitalización de la industria 4.0 y tecnología del futuro.

STEVI® Smart - Series 450/451/453, 423/463 Válvulas de Control de 3 vías para servicios de mezcla y derivación en aplicaciones de industria y climatización; alimentación agua de caldera y recirculación de bomba.

Diseños obturador mezclador y diversor; con opción de sellado, fuelle para aceite térmico. DN 15-300; Rating PN 16-40.

STEVI® Pro - ANSI Series 470/471, 453 Válvulas de Control de altas prestaciones para aplicaciones en industria petroquímica y energía. Diseños diversos de sellado y obturadores, internos de alto rendimiento.

DN 15-200; Rating ANSI 150-300#, paso recto,.

STEVI® BBD - Series 415

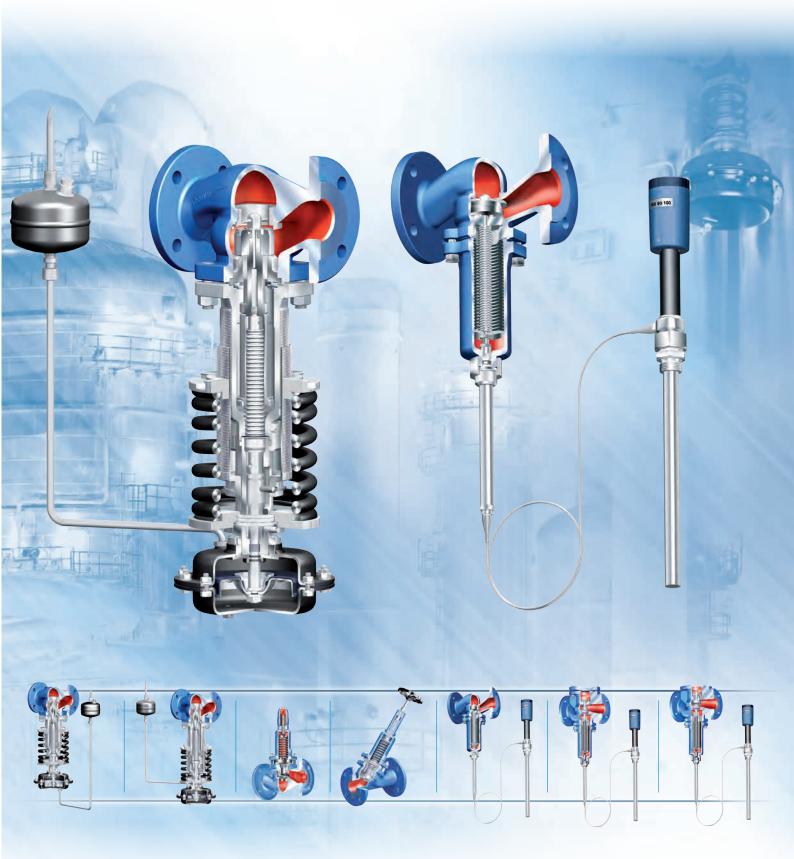
Válvulas automáticas para purga de caldera y autoclaves. Diseño con actuador neumático para cierre rápido, con palanca de acción manual. Accesorios: electroválvulas para accionamiento. DN 25-50; Rating PN 40.

STEVI® - Series 405/460 y Series STEVI®- H Válvulas Todo / Nada para servicios de cierre; con actuadores neumáticos y eléctricos, PN 16-40 DN 15-500, Rating PN 16, 25, 40

Válvulas para servicios de climatización series H: PN 16 - construcción ligera de 2 y 3 vías con actuadores eléctricos.

DN 15-250, Rating PN 6, 16.

STEVI PRO ANSI



STEVI BBD

STEVI H

PREDU®, PREDEX®, PRESO®, TEMPTROL® Válvulas Reguladoras de Presión y Temperatura

Válvulas Reguladoras de Presión y Temperatura, precisas, fiables y de tecnología modular.

Control sin energía auxiliar.

PREDU®, PREDEX®, PRESO®, TEMPTROL®

Válvulas Reguladoras de Presión y Temperatura

Válvulas auto accionadas sin energía auxiliar, tecnología de regulación simple, autónoma, segura y económica. Para la regulación de presión y temperatura con líquidos y gases.

Diseño compacto presentando una amplia gama de materiales, tamaños y ejecuciones para todas las aplicaciones en la industria, sistemas marinos, ERM de gas y climatización.

PREDU® PREDEX® - Series 701/705

Válvulas reguladoras de Presión con actuador, función reductora de presión aguas abajo (PREDU®) y función mantenedora de presión aguas arriba (PREDEX®). Con 5 modelos de actuador DMA para combinar los rangos de presión, con barrilete expansor de temperatura, equipadas con fuelle de equilibrio.

DN 15 - 150, PN 16 - 40

PRESO® - Series 753

Válvulas reguladoras de Presión con muelle de tarado, con fuelle de equilibrio y obturador de regulación, para aplicaciones como reguladora de presión diferencial, protección de bombas para asegurar un caudal mínimo, líneas de bypass en sistemas de fluido térmico. DN 15-100; Rating PN 16, 4 rangos de regulación entre 0.5 hasta 10 bar

TEMPTROL®

Válvulas reguladoras de Temperatura con tres modelos de termostato para una óptima banda proporcional, rango de temperatura ajustable, sensor recto o espiral para gases, vaina protectora y diversas longitudes de

DN 15 - 100: PN 16-40

Series 771 -772-775

Para servicios de acción directa y acción inversa (Normalmente cerrada), diseño de paso recto. Provistas con empaquetadura o fuelle de equilibrio. Series 773-774

Diseño tres vías función mezcladora y diversora.

TEMPTROL 773/774

La Válvula de Fuelle por excelencia.

La más amplia gama de modelos que un solo fabricante puede ofrecer. Fuelle multicapa con garantía certificada.

Válvulas de Interrupción con Fuelle

referente de mercado a nivel internacional, gracias a un sistema de estangueidad sin mantenimiento en planta. Con el tiempo la línea de válvulas de fuelle ARI FABA® ha evolucionado hasta las series actuales FABA® PLUS, FABA SUPRA-I®, FABA SUPRA-C® y FABA MD® ofreciendo variaciones en el diseño y con el denominador común de la calidad y seguridad.

¡No arriesgue con imitaciones, FABA está avalada por millones de válvulas en servicio desde hace más de 40 años!

FABA® PLUS – Válvulas de Interrupción con Fuelle serie estándar Válvulas libres de mantenimiento, con fuelle multicapa soldado al eje y campana de aislamiento térmico, con obturador cónico de serie v efecto auto limpiante, cierre metálico de precisión, obturador balanceante aislado del eje, empaquetadura de seguridad, seguro anti torsión del fuelle, eje sólido

DN 15 - 400; (PN 16, 25, 40) / +400°C-450°C

FABA® SUPRA-I – Válvulas de Interrupción con Fuelle de alto rendimiento

Válvulas libres de mantenimiento, con fuelle multicapa encamisado protegido del flujo, eje de 1 o 2 piezas, fuelle soldado al eje y campana de aislamiento térmico, con obturador cónico de serie y guiado compacto, asiento posterior del obturador, empaquetadura de seguridad, seguro anti torsión del fuelle.

DN 15 - 400; (PN 16-40) / +400°C-450°C

FABA® SUPRA-C – Válvulas de Interrupción con Fuelle para Industria química

Válvulas libres de mantenimiento, con fuelle multicapa reforzado sin camisa para auto limpieza y campana de aislamiento térmico, con eje de 1 o 2 piezas, con obturador cónico de serie y guiado adicional, asiento posterior del obturador, empaquetadura de seguridad, seguro anti torsión del fuelle.

DN 15 - 400; (PN 16-40) / +400°C-450°C

FABA® SUPRA-MD – Válvulas de Interrupción con Fuelle de alta presión

Válvulas libres de mantenimiento, con fuelle multicapa reforzado y extra largo, con obturador marginal asiento y obturador estelitado, cuerpo intermedio, rosca de eje extrafina para fácil maniobra, empaquetadura de seguridad, seguro anti torsión del fuelle y finales

DN 10 - 100; (PN 63-160) / +400°C-530°C

Versiones disponibles:

Materiales constructivos EN-JL-1040, EN-JS1049, EN-1.0619+N, Acero forjado 1.0460, 1.5415, 1.7335, Acero Inoxidable; conexiones por bridas EN/ANSI, soldar BW/SW, rosca, paso recto - angular 90°, inclinado en Y.

Homologaciones:

TA LÜFT DIN EN ISO 15848-1, ATEX, 68/14/EU

FABA PLUS

FABA SUPRA-I

FABA SUPRA-MD

La válvula de interrupción versátil y robusta. Seguridad de operación y durabilidad.

Válvulas de Interrupción

STOBU® es la serie de válvulas de interrupción tradicionales para servicios de bloqueo de flujo. Son las válvulas pioneras en la industria desde la fundación de la Compañía incorporando una evolución de diseño a lo largo del tiempo para favorecer nuevos diseños de obturador, funciones versátiles y rangos de presión.

¡La válvula clásica que combina la tecnología evolutiva de ARI!

STOBU® – Series estándar – Válvulas de Interrupción de paso recto e Inclinado

Válvulas de globo con empaquetadura de grafito de alta calidad, eje exterior y puente con prensa estopa, con obturador plano estándar – otros diseños opcionales*, homologación TA-LÜFT DIN EN ISO 15848-1, conexiones con bridas y soldar y roscadas (1/2"- 1"). DN 15 – 500; (PN 16, 25, 40) / +400°C-450°C

STOBU® – Series 017 - Válvulas de Interrupción de tres vías Válvulas de globo de tres vías, con empaquetadura de grafito de alta calidad, eje exterior y puente con prensa estopa, con obturador en U, asiento posterior, conexiones con bridas.

DN 15 – 250; (PN 16, 25, 40) / +300°C-450°C

STOBU^{\otimes} – Series de Media Presión - Válvulas de Interrupción PN 160

Válvulas de globo de altas prestaciones, con empaquetadura de grafito de alta calidad, eje exterior y puente con prensa estopa, con obturador de regulación, dispositivo de bloqueo y posición estándar, conexiones con bridas y soldar.

DN 10 - 100; (PN 63, 100, 160) / +550°C

$\mathsf{STOBU}^{@}$ Series actuadas - Válvulas de Interrupción con Actuadores

Válvulas de globo operadas por actuadores, con empaquetadura de grafito de alta calidad, eje exterior y puente, con obturador plano estándar – otros diseños opcionales*, conexiones con bridas y soldar, actuadores neumáticos DP y eléctricos PREMIO y otras marcas.

DN 10 - 50; (PN 63, 100, 160) / +550°C

(*) Versiones de obturador disponibles:

Plano, estelitado, cónico de regulación, suelto con muelle de retorno para función retención, obturador balanceado y obturador con junta blanda.

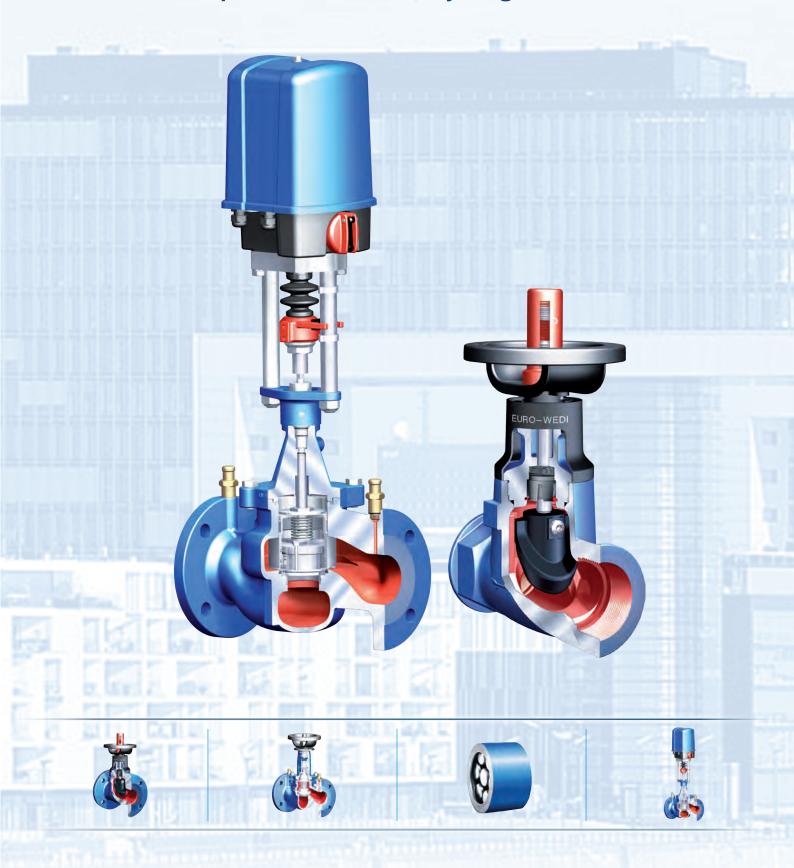
Materiales constructivos de Cuerpo

EN-JL-1040, EN-JS1049, EN-1.0619+N, Acero forjado 1.0460, 1.5415, 1.7335, 1.7357, Acero Inoxidable;

Internos de bronce para aplicación industria naval.

STOBU

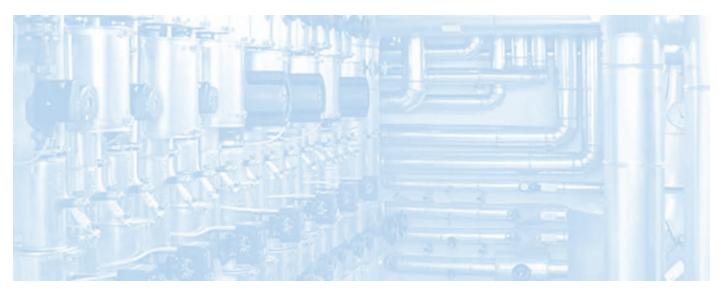
STOBU SERIES MEDIA PRESION


STOBU SERIES 017

STOBU SERIES ACTUADAS

ASTRA®, EUROWEDI®

Válvulas de Equilibrado de Flujo y Regulación Manual



Perfección con la Regulación del flujo Innovación y Calidad para los Sistemas de Edificación e Industria

ASTRA®, EUROWEDI®

Válvulas de Equilibrado de Flujo y Regulación Manual

EUROWEDI®- Válvulas de Interrupción para Regulación con cierre elástico.

Estanqueidad absoluta gracias al diseño de cierre elástico y con la prestación de una fina regulación, libres de mantenimiento, con dispositivo de bloqueo y limitador de carrera, capuchón aislante anti humedad e indicador de apertura de serie, disponibles con bridas (longitud S.14 y S.1) y roscadas. Bridas: DN 15 - 200; (PN 6, 16) / +120°C Roscada: DN 15 -50; (PN 6, 16) / +120°C

ASTRA®- ASTRA®-Plus; Válvulas de equilibrado de flujo Válvulas de regulación para equilibrado de flujo, versión estándar y con fuelle (ASTRA-PLUS), con capuchón aislante anti humedad, obturador de regulación, indicador de carrera digital y conexión para manómetros.

Con empaquetadura: DN 15 - 500; (PN 16) - +120°C (+200°C DN 250-500) ASTRA® Plus - Con fuelle: DN 15-500 (PN 16) hasta +350°C

ASTRA®-D – Limitador de caudal automático

Diseño WAFER para montaje entre bridas, para la regulación del caudal en línea. DN 50 - 800; (PN 16, 25)

ASTRA®-DC - Válvulas de equilibrado de flujo con actuador eléctrico

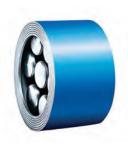
Válvulas de regulación con sistema de control de presión diferencial, equipadas con actuador eléctrico, construcción de paso recto con obturador de regulación y tomas para manómetros en ambos extremos.

DN 50 -150; (PN 16); DN 50-125 (PN 25)

ARImetec® - dispositivo electrónico de equilibrado Utilizado para la medición de presión diferencial en sistemas hidráulicos, formado por un dispositivo sensor y consola o Smartphone (vía APP).

Las Válvulas de Regulación y Equilibrado de Flujo Series EUROWEDI® y ASTRA® utilizadas en las instalaciones de climatización civil e industria, en sistemas de agua fría y caliente, aportan la calidad adicional que solo las mejores instalaciones

La regulación precisa y estanca está asegurada, así como un control óptimo del caudal gracias a la combinación de válvulas ASTRA® con el dispositivo de equilibrado ARIMETEC-DX®.


¡Eleve el nivel de sus instalaciones con la tecnología de vanguardia de ARI!

EUROWEDI

ASTRA / ASTRA PLUS

ASTRA D

ASTRA DC

Válvulas de Mariposa Triple Excéntricas

La Válvula de Proceso para las más arduas aplicaciones. Fuga Cero, bidireccional, alta temperatura y precisión. **ZETRIX®**

Válvulas de Mariposa Triple Excéntricas

ZETRIX®; Series 016 – Válvulas Triple Excéntricas con Doble Brida

Diseño EN 558-1, Series 13 con doble brida EN 1092/ASME 16.5, operación de 90° a muy baja fricción, válvulas sin mantenimiento y de larga duración en planta. Asiento estelitado (St. 21), con eje anti eyección (API 609) y empaquetadura de grafito.

DN 80 - 1200 (PN 16/40-150/300#)

ZETRIX®; Series 018 – Válvulas Triple Excéntricas tipo Lug Diseño EN 558-1, Series 16, ISO 5752 con orejetas roscadas, operación de 90º a muy baja fricción, válvulas sin mantenimiento y de larga duración en planta. Asiento estelitado (St. 21), con eje anti eyección (API 609) y empaquetadura de grafito.

DN 80 - 600 (PN 10, 16,25,40,63,100 // ANSI 150-600)

ZETRIX®; Series 019 – Válvulas Triple Excéntricas para soldar BW

Diseño EN 12982 SERIE 14, ASME B.16.25 con conexiones a línea BW, operación de 90° a muy baja fricción, válvulas sin mantenimiento y de larga duración en planta. Asiento estelitado (St. 21), con eje anti eyección (API 609) y empaquetadura de grafito.

DN 80 - 600 (PN 10, 16,25,40 // ANSI 150-300)

Diseño

EN 12516, ASME B.16.34; API 609 // Temp.: -60°C / +427°C – Materiales acero carbono: acero inoxidable.

Opciones de Operación:

Manual con reductor desembragable, Actuadores Neumáticos de simple y doble efecto, Actuadores Eléctricos e Hidráulicos. **Homologaciones:**

FIRE SAFE ISO 10479-API 607, ATEX, SIL, Opcional: TA LUFT (ISO 15848-1), NACE ARI ZETRIX[®] es la Válvula de Mariposa Triple excéntrica diseñada por ARI-Armaturen para las más arduas aplicaciones de procesos industriales asegurando la estanqueidad total. Gracias a la geometría del cierre obtiene un par de operación muy favorable, el cierre metálico con asiento laminado permite temperaturas de operación de hasta 427°C con bonete extendido.

Las Válvulas serie ZETRIX® ofrecen amplias combinaciones de materiales, Rating de Presión de Diseño, conexiones, actuación y homologaciones; la tecnología ARI está presente desde su concepción hasta el producto final.

ZETRIX SERIES 016

ZETRIX SERIES 018

ZETRIX SERIES 019

ZETRIX CON ACTUADOR

Válvulas de Mariposa Doble Excéntricas

Válvulas de Alto Rendimiento.

Una gran opción económica para servicios de altas prestaciones. Estanqueidad total con cierre metálico.

Válvulas de Mariposa Doble Excéntricas

 $\mathsf{ZEDOX}^{\otimes};$ Series 122 – Válvulas Doble Excéntricas con Doble Brida

Diseño EN 558-1, Series 14 con doble brida EN 1092/ASME 16.5, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo PTFE (+180°C) o Metálico (+260°C).

DN 200 - 1200; (PN 10,16,25,40, ANSI-150#),

ZEDOX®; Series 120 – Válvulas Doble Excéntricas tipo Wafer

Diseño EN 558 SERIE 20/25/16 tipo Wafer para montaje entre bridas operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo PTFE (+180°C) o Metálico (+260°C).

DN 80 – 800; (PN 10,16,25,40, ANSI-150#).

ZEDOX®; Series 121 – Válvulas Triple Excéntricas para soldar BW

Diseño EN 12982 SERIE 14, ASME B.16.25 extremos a línea para soldar BW, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo PTFE (+180°C) o Metálico (+260°C). DN 200 – 1600; (PN 10,16,25,40, ANSI-150#).

Diseño:

EN 12516, ASME B.16.34; API 609 // Temp.: -40°C / +400°C – Materiales acero carbono; acero inoxidable.

Opciones de Operación:

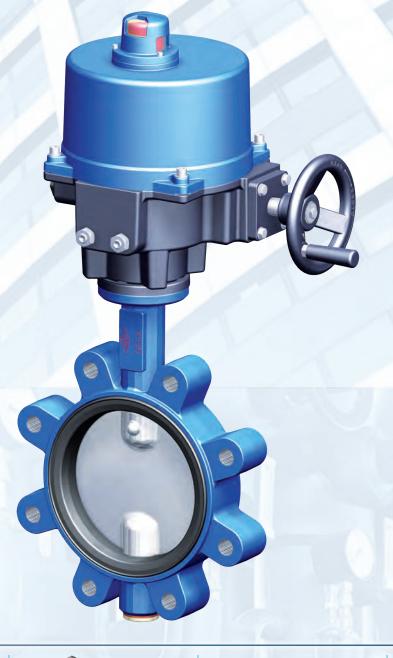
Manual con reductor desembragable, Actuadores Neumáticos de simple y doble efecto, Actuadores eléctricos e Hidráulicos. **Homologaciones:**

FIRE SAFE ISO 10479-API 607, ATEX, Opcional: TA LUFT (ISO 15848-1), NACE.

ARI ZEDOX[®] es la Válvula de Mariposa Doble excéntrica de alto rendimiento para las aplicaciones donde las válvulas concéntricas convencionales no pueden cubrir la demanda por temperatura o presión. Aseguran una operación fiable y suave presentando opción de cierre por PTFE o cierre metálico en función del requerimiento del servicio.

Las Válvulas serie ZEDOX[®] ofrecen amplias combinaciones de materiales, Rating de Presión de Diseño, conexiones, actuación y homologaciones; son válvulas de probado rendimiento en múltiples plantas industriales y de calefacción urbana.

ZEDOX SERIES 122



ZEDOX SERIES 120

ZEDOX SERIES 121

GESA®, ZESA®, ZIVA® Válvulas de Mariposa Concéntricas

La excelencia en diseño y economía. Soluciones económicas de alta calidad.

GESA®, ZESA®, ZIVA®

Válvulas de Mariposa Concéntricas

ZESA[®]; Series 012 – Válvulas de Mariposa Concéntricas tipo Wafer

Cuerpo en Fundición Nodular EN-JS 1030, Para montaje entre bridas, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo EPDM (+130°C); NBR (80°C) o FPM (+150C).
DN 25 – 500; (PN 6, 10,16)

$\mathsf{GESA}^{\circledcirc};$ Series 013 – Válvulas de Mariposa Concéntricas tipo Lug

Cuerpo en Fundición Nodular EN-JS 1030, Para montaje entre bridas, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo EPDM (+130°C); NBR (80°C) o FPM (+150C).
DN 25 – 500; (PN 10,16)

${\rm ZIVA}^{\otimes};$ Series Z014 – Válvulas de Mariposa Concéntricas tipo Wafer

Cuerpo en Fundición Nodular EN-JS 1030, Para montaje entre bridas, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo EPDM (+130°C); NBR (80°C); FPM (+150C) o NBR Blanco (80°C).
DN 25 – 600; (PN 6, 10,16)

ZIVA®; Series Z015 – Válvulas de Mariposa Concéntricas tipo Lug

Cuerpo en Fundición Nodular EN-JS 1030, Para montaje entre bridas, operación de 90° a muy baja fricción por el mínimo contacto del disco y anillo de cierre, válvulas sin mantenimiento y de larga duración en planta. Posibilidad de cierre con anillo EPDM (+130°C); NBR (80°C); FPM (+150C) o NBR Blanco (80°C).
DN 25 – 600; (PN 10,16)

Opciones de Operación:

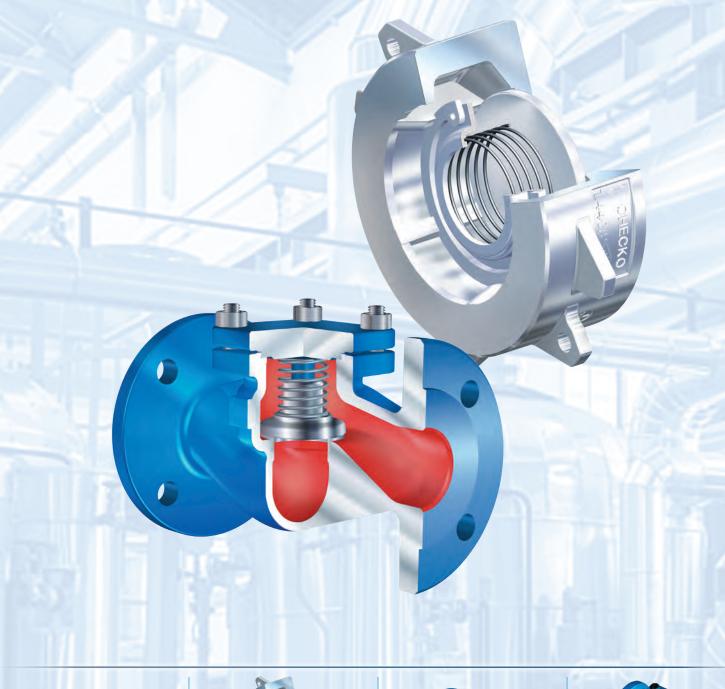
Manual con palanca de ajuste gradual y con reductor desembragable, Actuadores Neumáticos de simple y doble efecto, Actuadores eléctricos e Hidráulicos.

Homologaciones:

DVGW Registro para agua Potable (W270) y desinfección (W363); OVGW (Gas) Las series ARI ZESA® y GESA® comprenden una gama de Válvulas de Mariposa concéntricas que combinan la alta calidad con la economía para las aplicaciones de climatización, aguas y servicios secundarios. Son válvulas de diseño Wafer y Lug para montaje entre bridas y con estanqueidad total mediante asiento de elastómero en EPDM, NBR o FPM Vitón.

Las Válvulas serie ZIVA® y ZESA® disponen de homologación DVGW para agua y gas, siendo óptimas para aplicaciones industriales.

GESA


ZIVA Series Z014

ZIVA Series Z015

CHECKO®

Válvulas de Retención, Filtros y Mirillas

Asegurando, Protegiendo y Verificando el flujo. Productos ARI que completan la mejor elección.

Válvulas de Retención, Filtros y Mirillas

Misceláneos genuinos ARI que completan la mejor línea de productos en la industria y aseguran su instalación:

Asegurando el flujo en el sentido correcto con la gama de Válvulas de Retención CHECKO[®], de por sí una muy amplia gama de fabricación.

Protegiendo las válvulas aguas abajo con una gran elección de filtros y tamices interiores y **verificando** el condensado con las mirillas de doble cristal.

CHECKO[®]-V – Válvulas de Retención tipo globo, disco en vertical

Válvulas de diseño del cuerpo globo con disco recargado por muelle en vertical oscilante, Son válvulas unidireccionales con fluido entrando por la parte inferior del disco.

Diseños de paso recto y paso en Y, conexiones con bridas y soldar BW. Posibilidad de disco con junta de PTFE (+200°C); Homologación TA-LÜFT DIN EN ISO 15848-1, Prueba TÜV nº TA-09 2016 C04

DN 15 – 500; (PN 16, 25, 40) / +400°C-450°C DN 10 -100; (PN 63, 100, 160) / hasta +550°C

CHECKO®-D – Válvulas de Retención tipo Wafer de disco

Válvulas de diseño Wafer recargadas por muelle, para montaje entre bridas DIN EN PN 16-40, construidas integralmente en acero inoxidable, paso del flujo en línea horizontal. Diseño de cierre estándar metálico, Otras juntas de cierre sobre demanda, Homologación TRB 801 Nº 45

DN 15 - 350; (PN 40) / +400°C

FILTROS - Filtros coladores en Y

Diseño estándar en Y, paso recto, con tamices de diversos pasos de luz y cesta de soporte, tapón de drenaje y perforaciones para instalación de manómetros como opción. Conexiones con bridas y soldar. Homologación TA-LÜFT DIN EN ISO 15848-1, Prueba TÜV nº TA-09 2016 C04

DN 15 - 500; (PN 16, 25, 40) / +450°C DN 10 -100; (PN 63, 100, 160) / hasta +550°C

MIRILLAS - Visores de Flujo de doble cristal

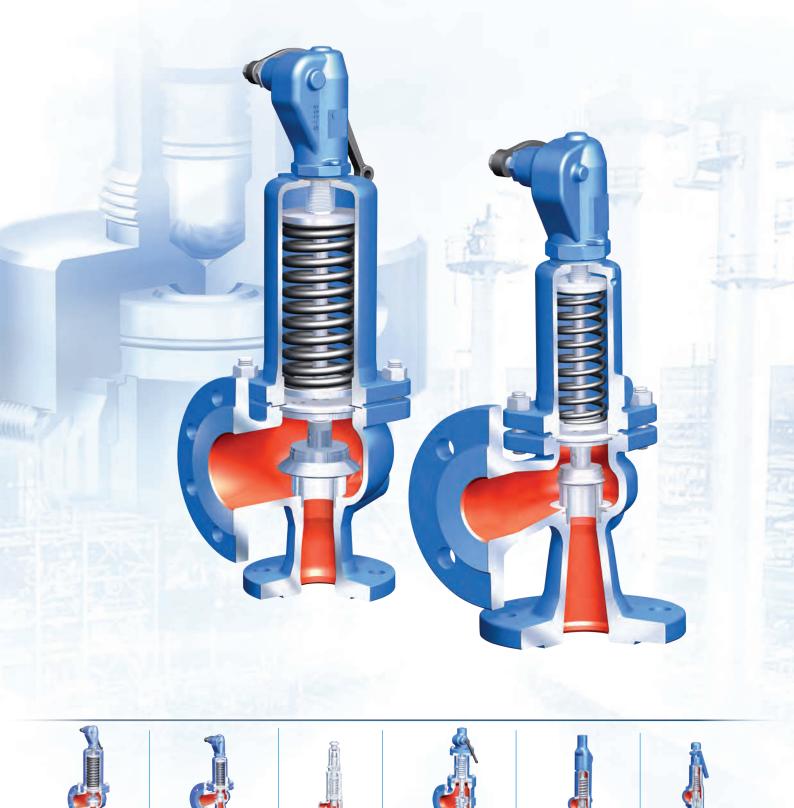
Visores de flujo con doble cristal tipo boro silicato (hasta +280°C), junta de unión y estanqueidad de grafito de alta calidad, conexiones con bridas según DIN-EN, roscados BSPP y NPT y para soldar BW. DN 15 –100; (PN 16, 40)

Materiales constructivos de Cuerpo

EN-JL-1040, EN-JS1049, EN-1.0619+N, Acero forjado 1.0460, 1.5415, 1.7335,1.7357, Acero Inoxidable; Internos de bronce para aplicación industria naval.

CHECKO V

CHECKO D


FILTROS

MIRILLAS

SAFE®

Válvulas de Seguridad

Una segura elección.

Protegiendo instalaciones industriales... ...Gracias a las múltiples combinaciones de válvulas. Estanqueidad total con el Sistema SHR hasta 220°C.

SAFE®

ARMATUREN

Válvulas de Seguridad

ARI SAFE®; el más completo programa de fabricación de Válvulas de Seguridad para la protección de recipientes a presión, total garantía gracias a la certificación de acuerdo a VdTÜV y ASME.

Tanto con diseño de apertura instantánea total como de alivio proporcional, la versatilidad y construcción modular de las válvulas ARI SAFE® son una segura elección.

SAFE® - Series 900

Válvulas de Seguridad de Apertura Instantánea Total, tobera semi, paso en Angulo, con resorte, combinaciones de bonete abierto (902), bonete cerrado (912) y bonete cerrado y capuchón estanco (901/911). Posibilidad de fuelle de compensación y otros accesorios.

Series EN: Entrada: DN 15 – 250, PN 16 – 40 Series ASME: 1"x2" hasta 6"x10"; 150-300#

SAFE® P – Series 920

Válvulas de Seguridad de Alivio Proporcional; tobera semi, paso en ángulo, con resorte, combinaciones de bonete abierto (924), bonete cerrado y capuchón estanco (923/921) y bonete cerrado (922). Posibilidad de fuelle de compensación y otros accesorios.

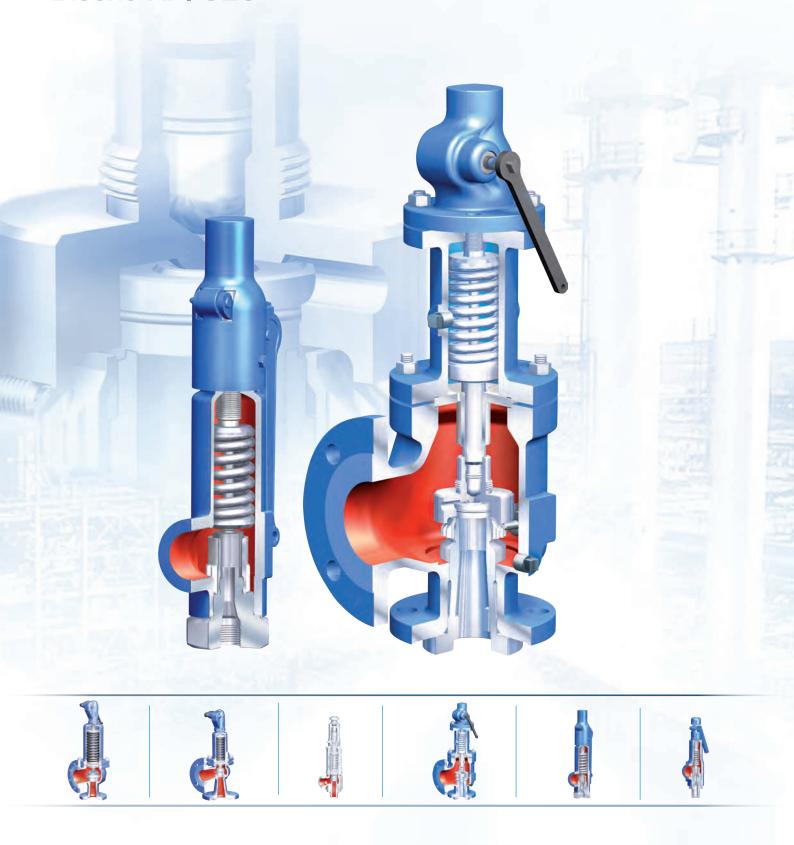
Entrada: DN 15 - 150, PN 16 - 40

SAFE® TCP/TCS - Series 960/ 950

Válvulas de Seguridad de alta presión, construidas en acero inoxidable 1.4581, con bonete cerrado, palanca opcional. Opcional para instalación horizontal. Entrada: DN 15 – 25; PN 100

SAFE® SHR

Sistema de estanqueidad total por junta blanda para Válvulas de Seguridad SAFE 900, resistente a vapor y agua caliente, hasta +220°C, asegura una perfecta estanqueidad al reasentar después del disparo.



SAFE SHR

ARI-REYCO®

Válvulas de Seguridad ASME VIII, sello UV por NB Diseño API 526

Una segura elección. Respuesta precisa, versátil y con garantía certificada

ARI-REYCO®

Válvulas de Seguridad ASME VIII, sello UV por NB

ARI REYCO® – Series R 971/973/974

Válvulas de Seguridad de diseño API 526. Construcción según ASME Sección VIII – Div. 1 y con sello UV por el NB. Tobera plena, disco reversible, disponible con fuelle de compensación en Inconel, Orificios constructivos desde D hasta T.

Bridas ANSI B.16.5,

Tamaño entrada 1" hasta 8"; 150-2500#
Accesorios: Tornillo Prueba, sensor de proximidad, disco con junta blanda, asiento estelitado.

ARI REYCO® - Series RL 14/40/41

Válvulas de Seguridad de diseño API 526. Construcción según ASME Sección VIII – Div. 1 y con sello UV por el NB. Tobera plena, disco reversible, disponible con fuelle de compensación en Inconel,

Extremos para roscar macho (RL14) o hembra (RL40/41), opcional con bridas B.16.5, o soldar BW/SW. Tamaño entrada 1/2" hasta 2"; 150-2500# Accesorios: Tornillo Prueba, disco con junta blanda.

ARI COMBI-C®

Válvula de conmutación para válvulas de seguridad; opera una válvula mientras mantiene la segunda en reserva, para cambiar o reparar una válvula en planta sin paro de producción.

. Para válvulas ARI SAFE y ARI REYCO.

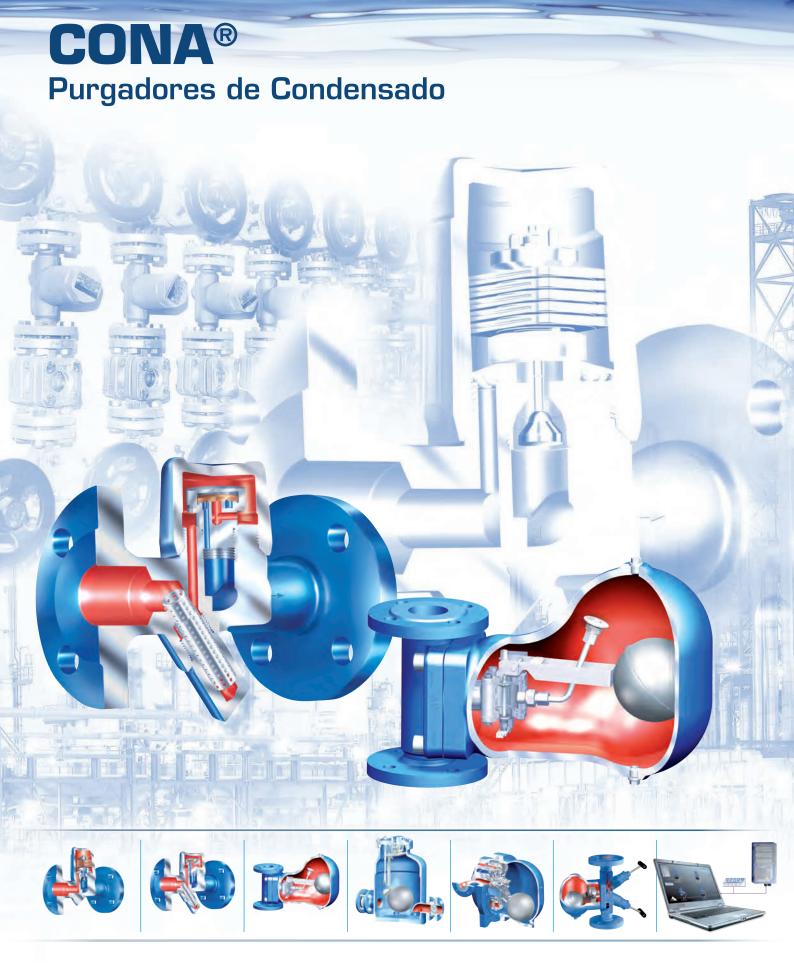
ARI COMBI-R®

Sistema Combinado de válvula de seguridad y Disco de ruptura, estanqueidad del 100%, sin pérdida de producto incluso con ruptura del disco, operación continua sin paradas en planta. Protege la válvula contra la corrosión y cristalización de ciertos fluidos.

ARI REYCO®; constituye un compacto programa de fabricación de Válvulas de Seguridad de acuerdo al diseño API 526 para la protección de recipientes a presión en aplicaciones de bienes de equipo e industria energética y del petróleo. Las válvulas están certificadas por el NB con sello UV.

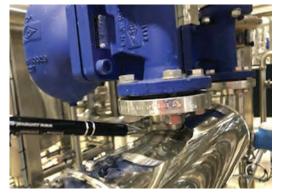
La versatilidad de la gama ARI REYCO® con sus numerosas disponibilidades de materiales, así como combinaciones de tamaños, orificios y rating hacen de esta serie una propuesta de gran alcance.

REYCO


REYCO - RL

COMBI - C

COMBI - R


Descarga de Condensado
A través del más completo programa de purgadores.
Eficiencia energética en sus instalaciones de vapor.

Purgadores de Condensado

CONA® - B; Purgadores Bimetálicos

Diseño con placas bimetal que proporcionan una óptima reacción a los cambios de temperatura en el sistema. Disponen de un eje auto ajustable y válvula de retención integrada. Resistentes al golpe de

Diferentes rangos de controladores según capacidad de descarga. DN 15-50 (1/2"-2") / PN 16-630 - 150-2500#

CONA® - M; Purgadores Termostáticos

Venteo automático en arranque y operación de planta con un diseño de rápida respuesta y sensibilidad al fluido. Óptimos por el sub-enfriamiento del condensado con un mínimo Revaporizado. Diversos tipos de cápsulas y rangos de controladores según capacidad de descarga. DN 15-50 (1/2"-2") / PN 16-40 - 150-300#

CONA® - TD; Purgadores Termodinámicos

Purgadores compactos para descarga intermitente, ligeros y de rápido montaie, óptimos en traceado de líneas. Con válvula de retención integrada y cámara térmica anti congelación. Para presión diferencial hasta 42 Baro DN 15-25 (1/2"-1") / PN 40-63 - 150-600#

CONA® - S/SC; Purgadores de Flotador

Purgadores de alta prestación indicados para el drenaie de condensado a temperatura de ebullición en los casos de mayor fluctuación de volumen y presión. Diseño mecánico con boya robusta, purgador intercambiable en planta de posición horizontal a vertical. Diferentes rangos de controladores según capacidad de descarga. DN 15-100 (1/2"-4") / PN 16-160 - 150-900#

CONA® Control

Sistema de monitorización remota de purgadores. Integrado en panel para el control del correcto funcionamiento de los purgadores de planta por temperatura.

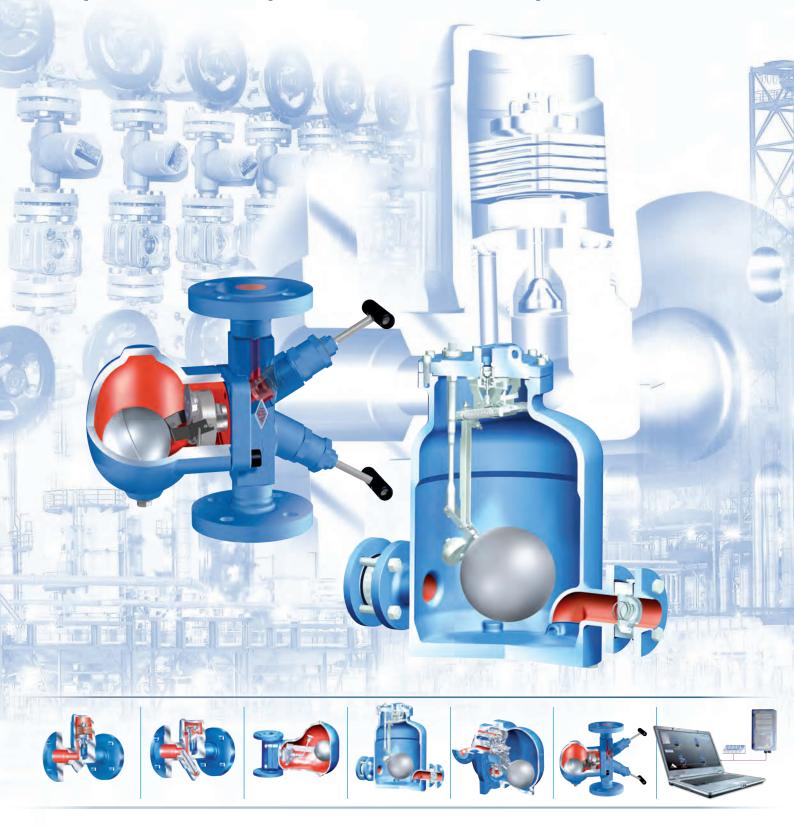
Tester multifunción ultrasónico para la comprobación de pruebas funcionales con purgadores y válvulas en planta.

El ahorro y eficiencia energética está a nuestro fácil alcance con la tecnología de Purgadores de la Serie CONA® gracias a una de las líneas más completas existentes en el mercado actual de productos para el control de condensado.

Disponibles en diseño bimetálico, termostático, termodinámico y mecánico por boya cerrada para adaptarse a las características que su instalación de vapor requiere. La gama incluye todas las conexiones y rango de materiales disponibles, con filtro interno y externo.

CONAB-M

CONATD


CONAS

CONTROL / SONACON

CONLIFT®, CONA-P®, ALL-IN-ONE®, CODI®

Especialidades para Ahorro de Vapor

Optimización de su planta con la tecnología de ARI. Ahorro energético con productos simples, autónomos y compactos.

CONLIFT®, CONA-P®, ALL-IN-ONE®, CODI® Especialidades para Ahorro de Vapor

ARI diseña una gama muy amplia de especialidades para el ahorro del vapor complementando a la serie de purgadores. Desde sistemas mecánicos de impulsión de condensado, estaciones compactas de purga, eliminadores de líquidos en sistemas de aire y Manifold compactos de recogida y distribución. Todos estos productos tienen una característica en común: ahorro energético y ahorro de instalación, una poderosa combinación para el beneficio de su planta.

CONLIFT®; Bomba Mecánica de Impulsión de Condensado Bombeo mecánico de condensado auto accionado por el vapor / gas en la instalación. Puede manejar condensado hasta la temperatura de ebullición y con gran capacidad de caudal. Sin mantenimiento y de larga duración.

DN 25, DN 40, DN 50, DN 80/50 - PN 16 - ANSI 150 Temp.: -10°C / +200°C

CONA® P; Purgador Bombeo Condensado

Purgador de bombeo para la regulación ininterrumpida del vapor incluso en caso de operación negativa. Combina la función de purgador de flotador convencional con la función de bombeo de condensado en un solo elemento, compacto.

DN 25, DN 40, DN 50 - PN 16 - ANSI 150

Temp.: -10°C / +200°C

Conexiones bridas o rosca.

ALL IN ONE®; Estación de Purga Compacta

Combina la purga de condensado en un sistema multi válvula ahorrando hasta un 80% de las conexiones de pipping. Integra en una sola estación el purgador a elección, válvula de cierre, filtro, válvula de retención y válvula de descarga. Flexible y modular, permitiendo el cambio de tipo de purgador

Flexible y modular, permitiendo el cambio de tipo de purgador una vez instalado.

DN 15,20,25 (1/2", 3/4", 1") - PN 40 -ANSI 300

CODI®; Manifold compacto de recogida y distribución de condensado

Combinan la recogida y distribución de condensado, vapor y otros fluidos en un sistema de Manifold compacto de tipo modular en bloques de 2 hasta 18 válvulas recambiables en línea. Pueden ser válvulas con fuelle opcionalmente.

Conexión Principal DN 40, DN 50 – secundaria DN 15 a DN 25. PN 40-63- ANSI 300-600

Otros misceláneos:

Conectores universales para reemplazo de purgadores, rompedores de vacío, lanzas de vapor, limitadores de temperatura de descarga del condensado, eliminadores de aire.

CONLIFT

CONAP

ALL IN ONE

CODI

ARI-PREsys-S[®], ARI-CORsys-ST[®] Sistemas Integrados para la Industria

Ingeniería de aplicación versátil.

Con los productos genuinos ARI, economía y rapidez.

ARI-PREsys-S®, ARI-CORsys-ST®

Sistemas Integrados con los productos genuinos ARI

Cuando se dispone de un programa de fabricación tan amplio bajo un mismo techo como ARI-Armaturen presenta, proveer Sistemas integrados es una ventaja adicional para nuestros clientes en términos de comodidad y economía.

Con la garantía que aporta una única fabricación en un conjunto. Pueden existir tantos sistemas como proyectos nos puedan plantear, los ingenieros de ARI están experimentados en la concepción y desarrollo de forma rápida y económica.

$\mbox{\rm ARI-PREsys-}S^{\otimes}-\mbox{\rm Estación}$ Reductora de Presión en líneas de Vapor.

Configuramos, calculamos e instalamos la rampa de reducción de vapor incluyendo línea principal con la válvula reductora y conjunto de válvulas de aislamiento y By-pass, válvula de seguridad, filtro y separador de gotas. También la línea de drenaje del condensado con purgadores, válvula de bloqueo y mirilla. Integralmente con productos ARI.

ARI-CORsys-ST® - Estación de recuperación y retorno de condensado

Configuramos, calculamos e instalamos un sistema para el retorno fiable del condensado, incluyendo tanque, bombas y válvulas de interrupción incluyendo medición de la temperatura del condensado y la regulación de nivel.

Sistema desgasificador de agua de caldera

Configuramos y calculamos un tanque de agua de alimentación de caldera incluyendo el desgasificador totalmente equipado con todos los elementos de regulación, productos genuinos ARI para un funcionamiento ininterrumpido de garantía.

Sistema de Calentamiento, productor instantáneo de ACS

Configuramos, calculamos e instalamos un sistema para el intercambio de calor para el vapor y retorno de condensado, libre de golpes de ariete y generando agua caliente sanitaria de forma rápida y segura.

Estos indicados son sólo ejemplos típicos de las múltiples combinaciones de diseños y aplicaciones que nuestro departamento de ingeniería puede confeccionar de forma individualizada a la necesidad de su proyecto.

ARI-PREsys-S

ARI-CORsys-ST

ARI-CORsys-ST

Visión General del Programa Una guía gráfica de todo el programa de fabricación de ARI-Armaturen

Contro

Válvulas de control STEVI® Pro (Series 422/462, 470/471)

STEVI® Vario (Series 448/449)

STEVI® Smart (Series 423/463, 425/426, 440/441, 450/451)

Regulación sin energía auxiliar PREDU® / PREDEX® / PRESO® / TEMPTROL®

Aislamiento

Válvula de proceso **ZETRIX**®

Válvula de mariposa **ZIVA®**

Válvula de asiento con fuelle FABA® Plus, FABA® Supra I/C

Válvula de asiento con empaquetadura **STOBU®**

Seguridad

Válvulas de seguridad (DIN/EN)

Válvulas de seguridad (DIN/EN)

Válvulas de seguridad (API 526, ASME) ARI-REYCO®

Válvulas de seguridad (ASME) ARI-REYCO® RL-series

Purgadores de condensado

Purgadores de condensado CONA® (mecánico de boya / termostático bimetálico y membrana / termodinámico), Sistemas de monitorización **CONA® Control**

Manifolds CODI® para funciones de conexión y derivación

Purgadores de condensado con válvulas de aislamiento integradas CONA® "All-in-One" (Incluye: válvulas de corte, filtro interior, protección antiretorno, válvula de drenaje)

Sistemas de bombeo mecánico CONLIFT®, CONA® P

VISIÓN GENERAL DEL PROGRAMA

Válvulas de Control	
Válvulas de Control de GloboVálvulas de Control con FuelleVálvulas de Mariposa	Pág
Válvulas Autoaccionadas	
 Válvulas Reductoras de Presión Válvulas Mantenedoras de Presión Válvulas Reguladoras de Presión Válvulas Reguladoras de Temperatura 	Pág.
Válvulas de Cierre Manuales	
 Válvulas de Globo con Fuelle Válvulas de Globo con Empaquetadura Válvulas de Globo de 3-vias con Empaquetadura Válvulas de Mariposa 	Pág.
Válvulas de Cierre Actuadas	
 Válvulas de Globo con Empaquetadura Válvulas de Globo con Fuelle Válvulas de Purga de Calderas Válvulas de Mariposa 	Pág.
Otras Válvulas	
Válvulas de RetenciónFiltros	Pág
Válvulas de Seguridad	
Válvulas Convencionales de disparo total	Pág.
Purgadores de Condensado	
 Purgadores Bimetálicos Purgadores Termostáticos Purgadores Termodinámicos Purgadores de Flotador Componentes Accesorios 	Pág.
Técnica de Climatización (HV	AC)
 Válvulas de cierre con Junta Elástica Válvulas de Equilibrado Válvulas de Mariposa Válvulas de Seguridad para Calefacción 	Pág.
Homologaciones	
	Pág.

DIN/EN

ANSI

C	ONTRO	L						
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de Co	ntrol de Globo						
		STEVI*	12.	440 / 448	DN 15 - 250	PN 16	EN-JL1040	A1/2
			22./23.	470 / 422 / 425 / 450 / 423	DN 15 - 300	PN 16 - 25	EN-JS1049	A1/2
			34./35.	445	DN 15 - 500	PN 25 - 40	1.0619+N	A1/2
			54./55.	_	DN 15 - 150	PN 25 - 40	1.4581	A1/2
			54./55.		DN 15 - 250	PN 25 - 40	1.4408	A1/2
			32.	44890	DN 15 - 100	ANSI 150	SA216WCB	A1
			52.	44890	DN 15 - 100	ANSI 150	SA351CF8M	A1
	u O u		32./35.	47090	DN 25 - 200	ANSI 150 - 300	SA216WCB	A1
			35.	453	DN 25 - 100	PN 40	1.0619+N	A2
		0.7.5.113	45.	44090	NPS 1/2" - 2"	ANSI 150 - 300	SA105	A1
		STEVI® (Fuellel de acero	22./23.	441 / 449 471 / 462 / 426 /	DN 15 - 300	PN 16 - 25	EN-JS1049	A1/2
	, 	Inoxidable)	34./35.	451 / 463 / 446	DN 15 - 500	PN 25 - 40	1.0619+N	A1/2
			54./55.	_	DN 15 - 150	PN 25 - 40	1.4581	A1/2
			54./55.	471 00	DN 15 - 250	PN 25 - 40	1.4408	A1/2
			32./35.	47190	DN 25 - 200	ANSI 150 - 300 / PN 40	SA216WCB	A1
_			45.	44190	NPS 1/2" - 2"	ANSI 150 - 300	SA105	A1
ıtro	Válvulas de Ma	ariposa						
álvulas de Control		ZETRIX*	30./31./32. /34./35.	016	DN 80 -1200	PN 6 - 40	1.0619+N	B5
s d			32./35.	01690	NPS 3" - 48"	ANSI 150 - 300	SA216WCB	В3
álvula			50./51./52. /54./55.	016	DN 80 - 1200	PN 6 - 40	1.4408	B5
\sim			52./55.	01690	NPS 3" - 48"	ANSI 150 - 300	SA351CF8M	B3
			30./31./32. /34./35.	018	DN 80 - 600	PN 6 - 40	1.0619+N	B5
			32./35.	01890	NPS 3" - 24"	ANSI 150 - 300	SA216WCB	B3
			50./51./52. /54./55.	018	DN 80 - 600	PN 6 - 40	1.4408	B5
	_		52./55.	01890	NPS 3" - 24"	ANSI 150 - 300	SA351CF8M	B3
			34./35.	019	DN 80 - 600	PN 6 - 40	1.0619+N	B5
			32./35.	01990	NPS 3" - 24"	ANSI 150 - 300	SA216WCB	B3
		ZETRIX®	36./35.	018	DN 80 - 600	PN 63 - 100	1.0619+N	B5
		PN63-160	37.	01890	NPS 3"- 24"	ANSI 600	SA216WCB	B3
			56./57.	018	DN 80 - 600	PN 63 - 100	1.4542	B5
		7FDOV®	57.	01890	NPS 3"- 24"	ANSI 600	SA351CF8M	B3
		ZEDOX®	34./35.	120	DN 80 - 800	PN 10 - 40	1.0619+N	B5
			54./55.	120	DN 80 - 800	PN 10 - 40	1.4408	B5
			84.	121	DN 200 - 1600	PN 6 - 25	1.0425	B5
			54.	121	DN 200 - 1600	PN 6 - 25	1.4307	B5
			84.	122	DN 200 - 1200 DN 200 - 1200	PN 10 - 25 PN 10 - 25	1.0425	B5 B5
			54.	122	DN 200 - 1200	1 IV IU - 20	1.4307	D 3

					l	doneidad d	e Aplicació	n de Fluidos	S					
			Fluidos	grupo 1						Fl	uidos grupo	0 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL ¹	Fuel Oil S²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	0
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	$\mathbf{\varnothing}$	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
$\mathbf{\varnothing}$	Ø	0	$\mathbf{\varnothing}$	0	Ø	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$	0	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$	0	$\mathbf{\varnothing}$	Ø	$\mathbf{\varnothing}$	$\mathbf{\mathscr{O}}$	0	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$	Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	$\mathbf{\varnothing}$	Ø	Ø	Ø	Ø
0	0	0	$\mathbf{\varnothing}$	0	$\mathbf{\varnothing}$	Ø	Ø	$\mathbf{\mathscr{O}}$	0	$\mathbf{\varnothing}$	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	<u>○</u>	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	○Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø

C	ONTRO	L						
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas Redu	ctoras de Presió		704	21145 450	53147	51 H 40 40	25
		PREDU®	12.	701 -	DN 15 - 150	PN 16	EN-JL1040	A5
			22./23.	_	DN 15 - 150	PN 16 - 25	EN-JS1049	A5
			32./35.		DN 15 - 150	PN 16 - 40	1.0619+N	A5
			32./35.	70190	NPS 1" - 6"	ANSI 150 - 300	SA216WCB	A4
			62./65.	701	DN 15 - 150	PN 16 / PN 40	1.4581	A5
	Válvulas Mant	enedoras de Pr	esión					
S		PREDEX*	12.	705	DN 15 - 150	PN 16	EN-JL1040	A5
ada			22./23.		DN 15 - 150	PN 16 - 25	EN-JS1049	A5
ion			32./35.		DN 15 - 150	PN 16 - 40	1.0619+N	A5
Sacc			32./35.	70590	NPS 1" - 6"	ANSI 150 - 300	SA216WCB	A4
Λutc			62./65.	705	DN 15 - 150	PN 16 / PN 40	1.4581	
Válvulas Autoaccionadas	Válvulas regul	adoras de Presi	ón					
IN/I	A	PRESO®	12.	753	DN 15 - 100	PN 16	EN-JL1040	A5
Vá			22.	-	DN 15 - 100	PN 16	EN-JS1049	A5
			32.	_	DN 15 - 100	PN 16	1.0619+N	A5
			52.	-	DN 15 - 100	PN 16	1.4408	A5
	Válvulas Regu	ladoras de Temp	eratura					
		TEMPTROL®	12.	771 / 772,	DN 15 -100	PN 16	EN-JL1040	A5
			22./23.	- 773 / 774, 775	DN 15 -100	PN 16 - 25	EN-JS1049	A5
			35.		DN 15 -100	PN 40	1.0619+N	A5
	<u>"</u>		55.		DN 15 -100	PN 40	1.4408	A5

					1	ldoneidad d	e Aplicació	n de Fluido:	S					
			Fluidos	grupo 1						FI	uidos grupo	2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL1	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
								α		<i>Q</i>	α		α	
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	⊘	⊘
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	0	0	Ø	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	Ø	0	0	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	Ø	0	0	Ø	0	Ø	Ø	Ø	Ø	Ø

C	IERRE							
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de Glo		40	044 047	DN 45 000	DNI44	EN 11 40 40	D4
		FABA®-Plus	12.	046, 047	DN 15 - 300	PN 16	EN-JL1040	B1
			22.	046	DN 15 - 350	PN 16	EN-JS1049	B1
			22.	047	DN 15 - 300	PN 16	EN-JS1049	B1
			23.	046	DN 15 - 150	PN 25	EN-JS1049	B1
	<u></u>		34./35.	046, 040, 066, 047	DN 15 - 400	PN 25 - 40	1.0619+N	B1
			45.	046, 040	DN 15 - 50	PN 40	1.0460	B1
	0 - 0		52./55.	046, 069	DN 15 - 250	PN 16 - 40	1.4408	B1
			62./65.	046, 069	DN 15 - 250	PN 16 - 40	1.4408 Cuerpo 1.0619+N Bonnet	B1
(0			54./55.	066	DN 15 - 200	PN 25 - 40	1.4408	B1
ales			32./35.	041	DN 15 - 250	ANSI 150 - 300	SA216WCB	B1
aun			45.	049	DN 15 - 50	ANSI 300	SA105	B1
Válvulas de Cierre Manuales		FABA®-Supra I	34./35.	146, 140, 166, 147	DN 15 - 400	PN 25 - 40	1.0619+N	B1
Cie			44./45.	146, 140	DN 15 - 50	PN 25 - 40	1.0460	B1
de			54./55.	146, 169, 166	DN 15 - 250	PN 25 - 40	1.4408	B1
ılas			32./35.	141	DN 15 - 250	ANSI 150 - 300	SA216WCB	B1
álγι			45.	149	DN 15 - 50	ANSI 300	SA105	B1
>		FABA®-Supra C	34./35.	146, 140, 166, 147	DN 15 - 400	PN 25 - 40	1.0619+N	B1
			44./45.	146, 140	DN 15 - 50	PN 25 - 40	1.0460	B1
			54./55.	146, 169, 166	DN 15 - 250	PN 25 - 40	1.4408	B1
			32./35.	141	DN 15 - 250	ANSI 150 - 300	SA216WCB	B1
			45.	149	DN 15 - 50	ANSI 300	SA105	B1
		FABA®-Supra	36./37./38.	146, 140	DN 65 - 100	PN 63 - 160	1.0619+N	B1
		PN63-160	46./47./48.	146, 140	DN 10 - 50	PN 63 - 160	1.0460	B1
			86./87./88.	146, 140	DN 10 - 50	PN 63 - 160	1.7335	B1
			86./87./88.	146, 140	DN 65 - 100	PN 63 - 160	1.7357	B1
			86./87./88.	140	DN 10 - 50	PN 63 - 160	1.5415	B1
		Válvulas de	45.	6A2	DN 15 - 25	PN40	1.0460	B1
		Interrupción con Fuelle	55.		DN 15 - 25	PN40	1.4541	B1

					ļ	doneidad d	e Aplicació	n de Fluido:	S					
			Fluidos	grupo 1						Fli	uidos grupo	2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL1	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
								Ø.		Ø.	Ø		Ø	
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	$\mathbf{\varnothing}$	0	$\mathbf{\mathscr{O}}$	0	Ø	Ø	$\mathbf{\varnothing}$	Ø	0	Ø	Ø	0	Ø	$\mathbf{\mathscr{O}}$
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	⊘	0	⊘	0	Ø	Ø	Ø	Ø	0	Ø	⊘	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	0	Ø	0	⊘	Ø	Ø	Ø	0	⊘	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
⊘	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	⊘
<u>Ø</u>	Ø	0	Ø	0	Ø	<u>Ø</u>	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	0	0	0	0	Ø	Ø	Ø	Ø	0	0	Ø	Ø	Ø	Ø
Ø	0	0	0	0	Ø	Ø	Ø	Ø	0	0	Ø	Ø	Ø	Ø
			_										_	

	2.11	
	Cuerpo- Catálog Material Reg.	go
Válvulas de Globo con Empaquetadura		
Interrupción con Empaquetadura ————————————————————————————————————	1.0460 B2	
55. DN 15 - 25 PN40 1.	1.4541 B2	
STOBU® 12. 006/306, 007/307 DN 15 - 300 PN 16 EI	EN-JL1040 B2	
22./23. 006/306, 007/307 DN 15 - 350 PN 16 - 25 EI	EN-JS1049 B2	
34./35. 006/306, 005, DN 15 - 500 PN 25 - 40 1. 007/307	1.0619+N B2	
45. 006, 005 DN 15 - 50 PN 40 1.	1.0460 B2	
	1.4408 B2	
PN63-160 PN 63 - 160 1.	1.0619+N B2	
46./47./48. 006, 005 DN 10 - 50 PN 63 - 160 1.	1.0460 B2	
	1.7335 B2	
the state of the s	1.7357 B2	
	1.5415 B2	
Válvulas de Globo de 3-vias con Empaquetadura		
STOBU® 017 12. 017 DN 15 - 250 PN 16 EI	EN-JL1040 B3	
34./35. DN 15 - 250 PN 25 - 40 1.	1.0619+N B3	
Válvulas de Globo de 3-vias con Empaquetadura STOBU® 017 12. 017 DN 15 - 250 PN 16 El 34./35. DN 15 - 250 PN 25 - 40 1. Válvulas de Mariposa		
	EN-JS1030 B5	
ZIVA*-G 21./22. 015 DN 25 - 600 PN 10 - 16 EI	EN-JS1030 B5	
ZETRIX® 30./31./32. 016 DN 80 -1200 PN 6 - 40 1.	1.0619+N B5	
32./35. 01690 NPS 3" - 48" ANSI 150 - 300 SA	SA216WCB B3	
50./51./52. 016 DN 80 - 1200 PN 6 - 40 1. /54./55.	1.4408 B5	
52./55. 01690 NPS 3" - 48" ANSI 150 - 300 SA	SA351CF8M B3	
30./31./32. 018 DN 80 - 600 PN 6 - 40 1. /34./35.	1.0619+N B5	
32./35. 01890 NPS 3" - 24" ANSI 150 - 300 SA	SA216WCB B3	
50./51./52. 018 DN 80 - 600 PN 6 - 40 1. /54./55.	1.4408 B5	
52./55. 01890 NPS 3" - 24" ANSI 150 - 300 S	SA351CF8M B3	
34./35. 019 DN 80 - 600 PN 6 - 40 1.	1.0619+N B5	
	SA216WCB B3	
DN42 140	1.0619+N B5	
	SA216WCB B3	
	1.4542 B5	
57. 01890 NPS 3"- 24" ANSI 600 SA	SA351CF8M B3	

A1 DIN/EN A1 ANSI

					ı	doneidad d	e Aplicació	n de Fluidos	S					
			Fluidos	grupo 1						Flo	uidos grup	0 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	Ø	Ø	Ø	0	0	Ø	Ø	Ø	Ø
0	U	O	O	O	O				O	0				
0	0	0	0	0	0	$\mathbf{\varnothing}$	Ø	Ø	0	0	$\mathbf{\varnothing}$	Ø	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$
0	0	0	0	0	0	0	0	Ø	Ø	Ø	Ø	0	Ø	0
0	0	0	Ø	0	0	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø
0	0	0	$\mathbf{\mathscr{O}}$	0	0	$\mathbf{\varnothing}$	Ø	Ø	Ø	Ø	$\mathbf{\varnothing}$	0	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	⊘	0	0	⊘	⊘	⊘	0	⊘	Ø	0	<u>Ø</u>	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	Ø	Ø	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	Ø	Ø	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	⊘	0	Ø	Ø	⊘	⊘	0	⊘	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	<u>Ø</u>
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø

CI	ERRE							
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de M	ariposa						
es		ZEDOX®	34./35.	120	DN 80 - 800	PN 10 - 40	1.0619+N	B5
s de nual			54./55.	120	DN 80 - 800	PN 10 - 40	1.4408	B5
Válvulas de Cierre Manuales			84.	121	DN 200 - 1600	PN 6 - 25	1.0425	B5
/álv			54.	121	DN 200 - 1600	PN 6 - 25	1.4307	B5
Cie			84.	122	DN 200 - 1200	PN 10 - 25	1.0425	B5
			54.	122	DN 200 - 1200	PN 10 - 25	1.4307	B5
	Válvulas de Gl	obo con Empaq	uetadura					
		BR 405	12.	405	DN 15 - 250	PN 16	EN-JL1040	B6
			22./23.	-	DN 15 - 400	PN 16 - 25	EN-JS1049	B6
			34./35.		DN 15 - 500	PN 25 - 40	1.0619+N	B6
			55.	_	DN 15 - 250	PN 25 - 40	1.4408	B6
		STOBU®	46./47./48.	006, 005	DN 10 - 50	PN 63 - 160	1.0460	B2
		PN63-160	86./87./88.	006, 005	DN 10 - 50	PN 63 - 160	1.7335	B2
			86./87./88.	005	DN 10 - 50	PN 63 - 160	1.5415	B2
	Válvulas de Gl	obo con Fuelle						
S	(1)	BR 460	12.	460	DN 15 - 250	PN 16	EN-JL1040	B6
Actuadas			22./23.	_	DN 15 - 400	PN 16 - 25	EN-JS1049	B6
ctu			34./35.	-	DN 15 - 500	PN 25 - 40	1.0619+N	B6
			55.	_	DN 15 - 250	PN 25 - 40	1.4408	B6
Válvulas de Cierre		FABA®-Supra I	34./35.	146, 140, 166, 147	DN 15 - 400	PN 25 - 40	1.0619+N	B1
de (44./45.	146, 140	DN 15 - 50	PN 25 - 40	1.0460	B1
ılas			54./55.	146, 169, 166	DN 15 - 250	PN 25 - 40	1.4408	B1
álvu			32./35.	141	DN 15 - 250	ANSI 150 - 300	SA216WCB	B1
>			45.	149	DN 15 - 50	ANSI 300	SA105	B1
		FABA®-Supra C	34./35.	146, 140, 166, 147	DN 15 - 400	PN 25 - 40	1.0619+N	B1
			44./45.	146, 140	DN 15 - 50	PN 25 - 40	1.0460	B1
			54./55.	146, 169, 166	DN 15 - 250	PN 25 - 40	1.4408	B1
			32./35.	141	DN 15 - 250	ANSI 150 - 300	SA216WCB	B1
			45.	149	DN 15 - 50	ANSI 300	SA105	B1
	Válvulas de Pu	ırga de Caldera	S					
		STEVI®BBD	35.	415	DN 25 - 50	PN 40	1.0619+N	B7

					ı	doneidad d	e Aplicació	n de Fluido	S					
			Fluidos	grupo 1						Flo	uidos grup	o 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	\circ
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	Ø	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	OO	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	$\mathbf{\varnothing}$

CI	ERRE							
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de Ma	ariposa						
		ZIVA*-Z NG-4313BQ0462 NW-6201BQ0460 DIN DVGW Reg.	20./21./22.	014	DN 25 - 600	PN 6 - 16	EN-JS1030	B 5
		ZIVA*-G NG-4313BQ0462 NW-6201BQ0460 DIN DVGW Reg.	21./22.	015	DN 25 - 600	PN 10 - 16	EN-JS1030	B5
		ZETRIX*	30./31./32./ 34./35.	016	DN 80 -1200	PN 6 - 40	1.0619+N	B5
			32./35.	01690	NPS 3" - 48"	ANSI 150 - 300	SA216WCB	В3
			50./51./52. /54./55.	016	DN 80 - 1200	PN 6 - 40	1.4408	B5
			52./55.	01690	NPS 3" - 48"	ANSI 150 - 300	SA351CF8M	В3
Te			30./31./32. /34./35.	018	DN 80 - 600	PN 6 - 40	1.0619+N	B5
Sier	.		32./35.	01890	NPS 3" - 24"	ANSI 150 - 300	SA216WCB	B3
Válvulas de Cierre Actuadas			50./51./52. /54./55.	018	DN 80 - 600	PN 6 - 40	1.4408	B5
Act			52./55.	01890	NPS 3" - 24"	ANSI 150 - 300	SA351CF8M	В3
/álv			34./35.	019	DN 80 - 600	PN 6 - 40	1.0619+N	B5
			32./35.	01990	NPS 3" - 24"	ANSI 150 - 300	SA216WCB	В3
		ZETRIX®	36./35.	018	DN 80 - 600	PN 63 - 100	1.0619+N	B5
		PN63-160	37.	01890	NPS 3"- 24"	ANSI 600	SA216WCB	В3
			56./57.	018	DN 80 - 600	PN 63 - 100	1.4542	B 5
			57.	01890	NPS 3"- 24"	ANSI 600	SA351CF8M	В3
		ZEDOX*	34./35.	120	DN 80 - 800	PN 10 - 40	1.0619+N	B5
			54./55.	120	DN 80 - 800	PN 10 - 40	1.4408	B5
			84.	121	DN 200 - 1600	PN 6 - 25	1.0425	B5
			54.	121	DN 200 - 1600	PN 6 - 25	1.4307	B5
			84.	122	DN 200 - 1200	PN 10 - 25	1.0425	B5
			54.	122	DN 200 - 1200	PN 10 - 25	1.4307	B5

					I	doneidad d	e Aplicaciói	n de Fluido	S					
			Fluidos	grupo 1						Flu	uidos grupo	o 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL1	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
	Ø		Ø.			O.	Ø.	O.		O.	Ø		OX.	
0	Ø	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	88	Ø	Ø
0	Ø	0	Ø	0	0	Ø	Ø	Ø	0	Ø	Ø	Ø Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	$\mathbf{\varnothing}$	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	$\mathbf{\mathscr{O}}$	Ø	$\mathbf{\varnothing}$	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	$\mathbf{\mathscr{O}}$	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
0	0	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø

CI	ERRE							
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de Re	etención						
		CHECKO®-V	10./12.	003/303, 004/304	DN 15 - 300	PN 6 - 16	EN-JL1040	B8
			22./23.	003/303, 004/304	DN 15 - 350	PN 16 - 25	EN-JS1049	B8
			34./35.	003/303, 004/304, 030, 063	DN 15 - 500	PN 25 - 40	1.0619+N	B8
			45.	003, 030	DN 15 - 50	PN 40	1.0460	B8
			52./55.	003, 039	DN 15 - 200	PN 16 - 40	1.4408	B8
		CHECKO®-V	36./37./38.	003, 030	DN 65 - 100	PN 63 - 160	1.0619+N	B8
		PN63-160	46./47./48.	003, 030	DN 10 - 50	PN 63 - 160	1.0460	B8
las			86./87./88.	003, 030	DN 10 - 50	PN 63 - 160	1.7335	B8
<u>al</u> Vu			86./87./88.	003, 030	DN 65 - 100	PN 63 - 160	1.7357	B8
s Va			86./87./88.	030	DN 10 - 50	PN 63 - 160	1.5415	B8
Otras Válvulas		CHECKO°-D	55.	001	DN 15 - 350	PN 16 - 40	1.4408	B8
	Filtros							
		Filtros	10./12.	050	DN 15 - 300	PN 6 - 16	EN-JL1040	B9
			22./23.	050	DN 15 - 350	PN 16 - 25	EN-JS1049	B9
			34./35.	050, 080	DN 15 - 500	PN 25 - 40	1.0619+N	B9
			52./54./55.	059	DN 15 - 200	PN 16 - 40	1.4408	B9
	1. Jan	Filtros PN63-160	36./37./38.	050, 080	DN 65 - 100	PN 63 - 160	1.0619+N	B9
		1 1403-100	46./47./48.	050, 080	DN 10 - 50	PN 63 - 160	1.0460	B9
			86./87./88.	050, 080	DN 10 - 50	PN 63 - 160	1.7335	B9
			86./87./88.	050, 080	DN 65 - 100	PN 63 - 160	1.7357	B9

					le	doneidad d	e Aplicació	n de Fluido:	S					
			Fluidos	grupo 1						Fl	uidos grup	o 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL1	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
<u>Ø</u>	Ø	0	Ø	0	Ø	<u>Ø</u>	Ø	Ø	0	Ø	Ø	0	<u>Ø</u>	$\overline{\mathscr{O}}$
									0					
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	O	Ø	Ø	0	$\mathbf{\varnothing}$	$\mathbf{\varnothing}$
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø Ø	0	Ø Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	ØØ	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
								\sim		\sim	\sim		\sim	
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø

	EGURIC	DAD						
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	Válvulas de Se	guridad						
		SAFE	12.	901 / 911	DN 20 - 150	PN 16	EN-JL1040	C1
		(disparo total/estándar)		902 / 912	DN 20 - 150	PN 16	EN-JL1040	C1
		TÜV · SV · -663 · D/G/F	23./25.	901 / 911	DN 20 - 250	PN 40	EN-JS1049	C1
		003 B/G/I		902 / 912	DN 20 - 250	PN 40	EN-JS1049	C1
			34./35.	901 / 911	DN 15 - 250	PN 40	1.0619+N	C1
				902 / 912	DN 15 - 250	PN 40	1.0619+N	C1
			55.	901 / 911	DN 15 - 100	PN 40	1.4408	C1
		SAFE-SN	32./35.	90190 / 91190	NPS 1" - 6"	ANSI 150 - 300	SA216WCB	C1
		Semi tobera		90290 / 91290	NPS 1" - 6"	ANSI 150 - 300	SA216WCB	C1
		(disparo total/estándar)	52./55.	90190 / 91190	NPS 1" - 4"	ANSI 150 - 300	SA351CF8M	C1
		SAFE-SN	32./35.	90190 / 91190	NPS 1" - 6"	ANSI 150 - 300	SA216WCB	C1
		Semi tobera		90290 / 91290		ANSI 150 - 300	SA216WCB	C1
		ASME Sec. VIII	52./55.	90190 / 91190	NPS 1" - 4"	ANSI 150 - 300	SA351CF8M	C1
		SAFE-P	12.	921 / 923	DN 15 - 100	PN 16	EN-JL1040	C1
	₽	(Estándar)		922 / 924	DN 15 - 100	PN 16	EN-JL1040	C1
		TÜV · SV ·	22.	921 / 923	DN 125 - 150	PN 16	EN-JS1049	C1
		-811 · D/G/F	22.	922 / 924	DN 125 - 150	PN 16	EN-JS1049	C1
			35.	921 / 923	DN 15 - 100	PN 40	1.0619+N	C1
			33.	922 / 924	DN 15 - 100	PN 40	1.0619+N	C1
(0			55.	921 / 923	DN 15 - 100	PN 40	1.4408	C1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		SAFE-TC	25.	941 / 943	DN 15 - 25	PN 40	EN-JS1049	C1
val		(disparo total/estándar)	25.	942	DN 15 - 25	PN 40	EN-JS1049	C1
Safety valves		TÜV · SV · -995 · D/G/F	55.	941 / 943	DN 15 - 25	PN 40	1.4408	C1
S		SAFE-TCP,	67.	951 / 953 / 961 / 963	DN 15 - 25	PN 100	1.4581 / EN-JS1049	C1
	Ā	SAFE-TCS	07.	952 / 962	DN 15 - 25	PN 100	1.4581 / EN-JS1049	
		(Estándar) TÜV · SV ·	57.	951 / 953 / 961 / 963		PN 100	1.4581 / EN-JS1049	
		-1041 · D/G/F	57.	7511 7551 7611 765	DIV 13 23	110100	1.43017 EN 331047	•
		ARI-REYCO®	32./35./37.	971 / 973	NPS 1" - 8"	ANSI 150 - 2500	SA216WCC	C1
	B	R Series Tobera plena	/38./39./3c.	974	NPS 1" - 8"	ANSI 150 - 2500	SA216WCC	C1
	行	ASME Sec. VIII	32./35./37.	971 / 973	NPS 1" - 8"	ANSI 150 - 2500	SA217WC6	C1
			/38./39./3c.	974	NPS 1" - 8"	ANSI 150 - 2500	SA217WC6	C1
	4		52./55./57. /58./59./5c.	971 / 973	NPS 1" - 8"	ANSI 150 - 2500	SA351CF8M	C1
		ARI-REYCO®	32./35./37.	966 / 968	NPS 1/2" - 2"	ANSI 150 - 2500	SA216WCC	C1
		RL Series Tobera plena	/38./39./3c.	969	NPS 1/2" - 2"	ANSI 150 - 2500	SA216WCC	C1
		ASME Sec. VIII	52./55./57. /58./59./5c.	966 / 968	NPS 1/2" - 2"	ANSI 150 - 2500	SA351CF8M	C1
	A A	ARI-SAFE Combi-C		Z10-22 / Z10-24	DN25 - DN250		1.0619+N	
				Z10-22 / Z10-24	DN25 - DN250		1.4408	
		ARI-REYCO® Combi-C		Z10-22 / Z10-24	NPS 1" - 10"		SA216WCB	
				Z10-22 / Z10-24	NPS 1" - 10"		SA351CF8M	
	<u> </u>	ARI-SAFE Combi-R		BT-KUB	DN20 - DN250		1.4571 / 1.4404	
		ARI-REYCO® Combi-R		BT-KUB	NPS 1/2" - 2"		SA479Gr316L	

A1 DIN/EN A1 ANSI

						doneidad d	e Aplicació	n de Fluido:	S					
			Fluidos	grupo 1						FI	uidos grup	o 2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL1	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	<u>Ø</u>
Ø	Ø	0	⊘	0	⊘	Ø	Ø	Ø	0	Ø	Ø	0	⊘	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	Ø	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ō	Ö	0	Ö	0	Ö	0	Ö	Ø	0	0	Ö	0	Ö	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	OO	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	⊘	ØØ	⊘	Ø
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
<u></u>	⊘	0	⊘	0	⊘	⊘	○Ø	Ø	0	⊘	○Ø	0	<u> </u>	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
O	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
<u>Ø</u>	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	88	Ø	Ø
Ø	Ø	Ø	Ø	0	0	0	0	Ø	0	Ø	Ø	0	Ø	0
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	0
$\mathbf{\varnothing}$	Ø	Ø	Ø	$\mathbf{\varnothing}$	0	0	0	Ø	0	$\mathbf{\varnothing}$	Ø	88	$\mathbf{\mathscr{O}}$	0
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	⊘
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	88	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
0	0	0	0	0	0	0	0	Ø	0	0	0	0	0	<u>Ø</u>
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	88	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
⊘	Ø	Ø	⊘	Ø	Ø	⊘	Ø	Ø	0	Ø	⊘	ØØ	⊘	⊘
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø	0	Ø	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø	ØØ	Ø	Ø
Ø	Ø	0	Ø	0	Ø	Ø	Ø	Ø	0	Ø	Ø		Ø	Ø
Ø		0	Ø	Ø	Ø	Ø	Ø	Ø	U	Ø		Ø	Ø	Ø

	JRGADO CONDE						Cuerpo-	Catálogo
			Fig. No.		Paso Nominal	Presión Nominal	Material	Reg.
	Purgadores B	imetálicos						
		CONA*B	12.	600	DN 25 - 50	PN 16	EN-JL1040	D1
			45.	600, 601	DN 15 - 50	PN 40	1.0460	D1
			55.	_	DN 15 - 50	PN 40	Acero Inoxidable	D1
			85.	_	DN 15 - 50	PN 40	1.0571	
			85.		DN 15 - 50	PN 40	Acero de aleación	D1
		CONA®B Alta Presión	86.	600	DN 15 - 50	PN 63	Acero de aleación	D1
		Alta i resion	87.	_	DN 15 - 25	PN 100	Acero de aleación	D1
			88.	_	DN 15 - 25	PN 160	Acero de aleación	D1
	л 🗀 п		89.		DN 15 - 25	PN 250	Acero de aleación	D1
			8a.	_	DN 15 / 25	PN 320	Acero de aleación	D1
			8b.	_	DN 15 / 25	PN 400	Acero de aleación	D1
	_		8c.		DN 15 / 25	PN 630	Acero de aleación	D1
		CONA®B	42./45.	600, 601	NPS 1/2" - 2"	ANSI 150 - 300	SA105	D1
용			52./55.	_	NPS 1/2" - 2"	ANSI 150 - 300	SA182 F321	D1
urgadores de Condensado	П Д		82./85.		NPS 1/2" - 2"	ANSI 150 - 300	SA350LF2	
g e		CONA®B Alta Presión	47.	600	NPS 1/2" - 1"	ANSI 600	SA105	D1
lo O		Alta i resion	86.	_	NPS 1/2" - 1"	ANSI 400	SA182F12Cl.2	D1
<u>e</u>			87.	_	NPS 1/2" - 1"	ANSI 600	SA182F12Cl.2	D1
SS			87.	_	NPS 1/2" - 1"	ANSI 600	SA350LF2	
ore			88.	_	NPS 1/2" - 1"	ANSI 900	SA182F12Cl.2	D1
Jad			89.	_	NPS 1/2" - 1"	ANSI 1500	SA182F22Cl.3	D1
			8c.	_	NPS 1/2" - 1"	ANSI 2500	SA182F22Cl.3	D1
<u>а</u>			8c.		NPS 1/2" - 1"	ANSI 2500	SA182F91	D1
	Purgadores Te	ermostáticos						
		CONA®M	12.	610	DN 15 - 25	PN 16	EN-JL1040	D2
			45.	610, 611,	DN 15 - 25	PN 40	1.0460	D2
			55.	612, 613	DN 15 - 25	PN 40	Acero Inoxidable	D2
			85.	_	DN 15 - 25	PN 40	1.0571	
			85.	_	DN 15 - 25	PN 40	Acero de aleación	D2
			45.	616	DN 25 - 50	PN 40	1.0460	D2
	п 🚝 п		85.		DN 25 - 50	PN 40	1.0571	
			52./55.	614, 615, 619	DN 15 - 25 NPS 1/4" - 1"	PN 16 / 40	Acero Inoxidable	D2
	•		42./45.	610, 611,	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D2
			52./55.	612, 613	NPS 1/2" - 1"	ANSI 150 - 300	SA182F321	D2
			82./85.		NPS 1/2" - 1"	ANSI 150 - 300	SA350LF2	
			42./45.	616	NPS 1" - 2"	ANSI 150 - 300	SA105	D2

					ļ	doneidad d	e Aplicació	n de Fluidos	S					
			Fluidos	grupo 1						Fl	uidos grupo	2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	\circ	0	\circ	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	⊘	0	0	<u>Ø</u>
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	⊘
	0	0	0		0	0	0	0	0				0	
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø

Fiuld								
	1001001							
PL	JRGADOI	RES						
D	CONDE	NSADO						
	- GOIADE	INCADO						
							Cuerpo-	Catálogo
			Fig. No.		Paso Nominal	Presión Nominal	Material	Reg.
	Purgadores Te	rmodinámicos						
		CONA®TD	45.	640, 641	DN 15 - 25	PN 40	1.0460	D4
			85.	-	DN 15 - 25	PN 40	1.0571	
			85./86.		DN 15 - 25	PN 40 - 63	Acero de aleación	D4
	ДĒЛ		55./56.		DN 15 - 25 NPS 3/8" - 1"	PN 40	Acero Inoxidable	D4
			42./45.	-	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D4
			47.	-	NPS 1/2" - 1"	ANSI 600	SA105	D4
			52./55.		NPS 1/2" - 1"	ANSI 150 - 300	SA182 F321	D4
	ПФП		82./85.		NPS 1/2" - 1"	ANSI 150 - 300	SA350LF2	
			56.	641	NPS 3/8" - 3/4"	ANSI 400	A743CA40	D4
			56.		NPS 1"	ANSI 400	SA182F6A	D4
	Purgadores de	Flotador						
		CONA®S	12.	631	DN 15 - 50	PN 16	EN-JL1040	D3
			25.		DN 15 - 50	PN 40	EN-JS1049	D3
			45.		DN 15 - 50 (100)	PN 40	1.0460	D3
0			55.	-	DN 15 - 50	PN 40	Acero Inoxidable	D3
de Condensado			82./85.		DN 15 - 100	PN 16 / 40	1.0571	
ens			86./87./88.	631, 632	DN 15 - 50	PN 63 - 160	Acero de aleación	D3
puo			82./85.	637	DN 50 - 100	PN 16 / 40	Acero de aleación	D3
S			45.	633	DN 40 - 100	PN 40	1.0460	D3
			82./85. 42./45.	420	DN 40 - 100 DN 50 - 100	PN 16 / 40	1.0571	D3
Purgadores			42.745. 55.	639	DN 50 - 100	PN 16 / 40 PN 40	Acero Inoxidable	D3
adc			82./85.		DN 50 - 100	PN 16 / 40	1.0571	В
urg			12.	630	DN 15 - 50	PN 16	EN-JL1040	D3
4			25.	-	DN 15 - 50	PN 40	EN-JS1049	D3
			45.		DN 15 - 100	PN 40	1.0460	D3
			55.	-	DN 15 - 50	PN 40	Acero Inoxidable	D3
			85.		DN 15 - 50	PN 40	1.0571	
			11.	631	NPS 1/2" - 2"	ANSI 125	EN-JL1040 (cf. ASTM A 126 Cl. B)	D3
			22.		NPS 1/2" - 2"	ANSI 150	EN-JS1049 (cf. A395)	D3
			42./45.		NPS 1/2" - 4"	ANSI 150 - 300	SA105	D3
			52./55.		NPS 1/2" - 4"	ANSI 150 - 300	SA182F321	D3
			82./85.		NPS 1/2" - 2"	ANSI 150 - 300	SA350LF2	
			88.	631, 632	NPS 1/2" - 2"	ANSI 900	SA182F12Cl.2	D3
			82./85.	637	NPS 2" - 4"	ANSI 150 - 300	SA350LF2	
			42./45.	633	NPS 1 1/2" - 4"	ANSI 150 - 300	SA105	D3
			82./85.		NPS 1/2" - 4"	ANSI 150 - 300	SA350LF2	
			41./42./45.	639	NPS 2" - 4"	ANSI 125 - 300	SA105	D3
			52./55.	-	NPS 2" - 4"	ANSI 125 - 300	SA182F321	D3

82./85.

00 SA350LF2

A1 DIN/EN A1 ANSI

ANSI 150 - 300

NPS 2" - 4"

					I	ldoneidad d	e Aplicació	n de Fluido	S					
			Fluidos	grupo 1						F	luidos grupo	2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL ¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	ØØ	0	0	ØØ
0	0	0	0	0	0	0	0	0	0	0	OO	0	0	ØØ
0	0	0	0	0	0	0	0	0	0	0	OO	0	0	OO
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	66	0	0	Ø
0	O	O	0	O		O	0	0	0	0		0	0	
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	⊘
0	0	⊘	⊘	0	0	0	0	⊘	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	⊘	0	0	⊘
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø

Fluid	on Programa <i>i</i> os							
	JRGADOI CONDE						Cuerpo-	Catálogo
		-	Fig. No.		Paso Nominal	Presión Nominal	Material	Reg.
	Purgadores de	CONA°S						
	_	COIVA 5	11.	630	NPS 1/2" - 2"	ANSI 125	EN-JL1040 (cf. ASTM A 126 Cl. B)	
			22.	-	NPS 1/2" - 2"	ANSI 150	EN-JS1049 (cf. A395)	D3
			42./45.	-	NPS 1/2" - 2"	ANSI 150 - 300	SA105	D3
			52./55.	-	NPS 1/2" - 2"	ANSI 150 - 300	SA182F321	D3
			82./85.		NPS 1/2" - 2"	ANSI 150 - 300	SA350LF2	
		CONLIFT®	22.	691	DN 50 - 80	PN 16	EN-JS1049	D3
			55.	691	DN 25 - 80	PN 16	1.4571	D3
			82.	691	DN 25 - 80	PN 16	Cuerpo: P235GH, P250GH, P265GH Tapa: P250GH	D3
		CONA*P	22.	694	DN 25 - 50	PN 16	EN-JS1049	D3
		CONA*SC	42./44./45.	634	DN 15 - 25	PN 16 - 40	1.0460	D3
			54./55.	-	DN 15 - 25	PN 25 - 40	Acero Inoxidable	D3
			82./85.	-	DN 15 - 25	PN 25 / 40	1.0571	
용			42./44./45.	636	DN 15 - 25	PN 16 - 40	1.0460	D 3
Sa			54./55.	-	DN 15 - 25	PN 25 - 40	Acero Inoxidable	D3
Gen			82./85.	-	DN 15 - 25	PN 25 / 40	1.0571	
Condensado			52.	629	NPS 1/2"	PN 16	Acero Inoxidable	D3
			42./45.	634	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D3
Purgadores de			52./55.	-	NPS 1/2" - 1"	ANSI 150 - 300	SA182F321	D 3
res			82./85.	-	NPS 1/2" - 1"	ANSI 150 - 300	SA350LF2	
용			42./45.	636	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D 3
g			52./55.	-	NPS 1/2" - 1"	ANSI 150 - 300	SA182F321	D3
Pu			82./85.	-	NPS 1/2" - 1"	ANSI 150 - 300	SA350LF2	
		CONA*SC Plus	12.	635	DN 25	PN 16	EN-JL1040	D3
			25.	-	DN 25	PN 40	EN-JS1049	D3
	_		45.	-	DN 25	PN 40	1.0460	D3
			55.	-	DN 25	PN 40	Acero Inoxidable	D3
	1		85.	-	DN 25	PN 40	1.0571	
			42./45.	635	NPS 1"	ANSI 150 - 300	SA105	D3
			82./85.	-	NPS 1"	ANSI 150 - 300	SA350LF2	D3
	D							
	Purgadores co	on conexión a pr CONA® Universal	55.	604, 622, 628, 642, 643	NPS 3/8"	ANSI 300	Acero Inoxidable	D5
		Connector	55.	681, 682, 683, 684	NPS 1/2" - 1"	ANSI 300	Acero Inoxidable	D5
	Estación de Pu	ınga						
	Estacion de Pt		45	(0) (1) (4)	DN 15 25	DN 40	1.04/0	DE
		CONA®All-in-one	45. 55.	60A, 61A, 64A, 63A	DN 15 - 25	PN 40 PN 40	1.0460	D5 D5
			55.		DN 15 - 25	MIN 4U	Acero Inoxidable	כם

42./45.

52./55.

60A, 61A, 64A,

63A

Referirse a Fichas Técnicas de Producto para más datos / Observar las limitaciones en Normas! El Ingeniero de diseño de planta es el responsable último de la correcta selección de producto..

ANSI 150 - 300

ANSI 150 - 300

NPS 1/2" - 1"

NPS 1/2" - 1"

A1 ANSI

D5

D5

SA105

A1 DIN/EN

SA182F321

			Fluidae		ı	doneidad d	e Aplicació	n de Fluidos	S	FI		2		
Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno Oxígeno	Aceite térmico	Diesel / Fuel Oil EL ¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	uidos grupo Ydna (oxigenada) Adna (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	Ø	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	Ø	⊘	0	0	0	0	Ø	0	0	⊘	0	0	⊘
0	0	0	0	0	0	0	0	Ø	0	Ø	Ø	0	0	Ø
0	0	0	0	0	0	0	0	⊘	0	Ø	Ø	0	0	⊘
O		O	0	O		O	O		O				O	
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	⊘
0	0	0	0	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	<u> </u>	<u></u>	0	0	0	0	Ø	0	0	Ø	0	0	⊘
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	⊘	0	0	⊘
0	0	0	0	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	Ø	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	⊘	0	0	⊘	0	0	⊘
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	⊘	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	⊘	0	0	⊘
 0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
(aplicable applicable	e / () Por	tavor conta	ctar fabrican	te / ¹ ext	ra light / 2	pesado / ³	p. ej. nitróge	no					

_	IRGADOI CONDE							
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo Reg.
	CONA® Compo	nentes						
		Válvula de drenaje de	12.	665	DN 15 - 25	PN 16	EN-JL1040	D6
	The Land	condensado en arrangue / parada	45.		DN 15 - 25	PN 40	1.0460	D6
		arranque / paraua	42./45.	665	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D6
		Válvula de drenaje de	45.	645, 647	DN 15 - 25	PN 40	1.0460	D6
		condensados con ajuste de temperatura	42./45.	645, 647	NPS 1/2" - 1"	ANSI 150 - 300	SA105	D6
S		Válvula de retorno de	45.	650	DN 15 - 50	PN 40	1.0460	D6
ente		líquidos con limitador de temperatura	42./45.	650	NPS 1/2" - 2"	ANSI 150 - 300	SA105	D6
Componentes		Rompedor de vacío	52./55.	655	DN 15	PN 16 / 40	Acero Inoxidable	D6
		Automatismo de	22.	656	DN 15	PN 16	EN-JS1049	D6
		purga de aire y ventilación	34./35.		DN 15 - 25	PN 25 - 40	Acero al Carbono	D6
	녜 (ㅇ)	7011111401011	54./55.		DN 15 - 25	PN 25 - 40	Acero Inoxidable	D6
			32./35.	656	NPS 1/2" - 1"	ANSI 150 - 300	SA216WCB	D6
			52./55.		NPS 1/2" - 1"	ANSI 150 - 300	SA351CF8	D6
		Inyector de vapor	54.	651	DN 15 / 25 / 40	PN 25	Acero Inoxidable	D6
	CONA® Acceso	rios	'					
	П — П	Visores de flujo	12.	660	DN 15 - 100	PN 16	EN-JL1040	D7
		(mirillas) de doble cristal	32./35.		DN 15 - 100	PN 16 / 40	Acero al Carbono	D7
		Cristal	52./55.		DN 15 - 100	PN 16 / 40	Acero Inoxidable	D7
	Sistema de Mo	onitorización de	Duraador	-05				
	Oisteina de ivie	CONA®-control	45.	685	DN 15 - 50	PN 40	1.0460	D7
	A _A	COLUT COLLIGI	55.		DN 15 - 50	PN 40	Acero Inoxidable	D7
			42./45.	685	NPS 1/2" - 2"	ANSI 150 - 300	SA105	D7
S			52./55.		NPS 1/2" - 2"	ANSI 150 - 300	SA182F321	D7
orio						ANSI 150 - 500	3A102F321	D/
Ses	Manifolds de r	ecogida y distril		condensado				
Accesorios	.o. o.	CODI®S	45./46.	671, 672	DN 25 - 50	PN 40 - 63	1.0460	D8
			55.		DN 25 - 50	PN 40	1.0460	D8
			42./45.		NPS 1" - 2"	ANSI 150 - 300	SA105	D8
			52./55.		NPS 1" - 2"	ANSI 150 - 300	SA182F321	D8
		CODI®B	45./46.	675, 676	DN 25 - 50	PN 40 - 63	1.0460	D8
	AD On				DN 25 F0	DN 40	104/0	
			55.		DN 25 - 50	PN 40	1.0460	D8
			55. 42./45.		NPS 1" - 2"	ANSI 150 - 300	SA105	D8

Idoneidad de Aplicación de Fluidos															
	Fluidos grupo 1								Flo	uidos grupo	2				
	Amoniaco	Gasolina	Biogas	Gas Natural / Metano	Oxígeno	Aceite térmico	Diesel / Fuel Oil EL ¹	Fuel Oil S ²	Aire	Agua de mar < 25°C	Gases Neutrales ³	Agua (oxigenada)	Agua desmineralizada	Agua Glicolada	Vapor
	0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
	0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	Ø Ø Ø	0 0 0	0 0 0	Ø Ø Ø
	0	0	0	0	0	0	0	0	0	0	0	Ø	0	0	Ø
	0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	Ø Ø Ø	0 0 0	0 0	Ø Ø Ø
	0	0	0	0	0	0	0	0	0	0	0	Ø Ø	0	0	⊗

TÉ Cl (H	CNICA IMATIZ IVAC)	DE ACIÓN						
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo- Reg.
		EURO-WEDI®	10./12.	070, 071, 072, 073	DN 15 - 200	PN 6 / 16	EN-JL1040	B4
			12.	076, 078	DN 15 - 50 NPS 1/2" - 2"	PN 6 / 16	EN-JL1040	B4
		ASTRA*	12.	020	DN 15 -200	PN 16	EN-JL1040	B9
			12.	042	DN 250 - 500	PN 16	EN-JL1040	B9
		ASTRA-Plus®	22.	042	DN 15 - 500	PN 16	EN-JS1049	B9
de Climatización		ASTRA*D	22./23.	021	DN 50 - 800	PN 16 / 25	EN-JS1030	
		ASTRA*DC	12.	022	DN 50-150	PN 16	EN-JL1040	
Técnica			23.	022	DN 50-125	PN 25	EN-JS1030	
		ZESA*	20./21./22.	012	DN 25 - 500	PN 6 / 10 / 16	EN-JS1030	B6
		GESA*	21./22.	013	DN 25 - 500	PN 10 / 16	EN-JS1030	B6
		ZESA*-EA	20./21./22.	012	DN 25 - 200	PN 6/10/16	EN-JS1030	B6
		GESA®-EA	21./22.	013	DN 25 - 200	PN 10 / 16	EN-JS1030	B6
		ZESA*-E	20./21./22.	012	DN 25 - 500	PN 6 / 10 / 16	EN-JS1030	B6
		GESA®-E	21./22.	013	DN 25 - 500	PN 10 / 16	EN-JS1030	B6

		Selecci (of	Selección de pos. aplicaciones (otras bajo demanda)							
Agua caliente hasta 120°C	Agua Glicolada	Agua potable	Agua de piscina	Aire comprimidor	Vapor baja presión (màx. 1 barú)	Agua de acuerdo a VDI2035	Instalaciones de calefacción	Instal. de climatización y agua de refrigeración	Instal. de piscinas	Sistemas de aire comprimido
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	Ø	0	Ø	Ø	Ø	0	Ø
(hasta 110°C)	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
Ø	Ø	Ø	Ø	(sóloNBR)	0	(sólo EPDM)	Ø	Ø	Ø	(sólo NBR)
Ø	Ø	Ø	Ø	(sólo NBR)	0	(sólo EPDM)	Ø	Ø	Ø	(sólo NBR)
0	Ø	Ø	0	0	0	(sólo EPDM)	Ø	0	0	0
0	Ø	Ø	0	0	0	(sólo EPDM)	Ø	0	0	0
Ø	Ø	Ø	Ø	(osólo NBR)	0	(sólo EPDM)	Ø	Ø	Ø	(sólo NBR)
Ø	Ø	Ø	Ø	(sólo NBR)	0	(sólo EPDM)	Ø	Ø	Ø	(sólo NBR)

TÉ CL (H	CNICA IMATIZ IVAC)	DE 'ACIÓN						
			Fig. No.		Paso Nominal	Presión Nominal	Cuerpo- Material	Catálogo- Reg.
		FABA® Plus	12.	046	DN 15 - 300	PN 16	EN-JL1040	B1
			22./23.	046	DN 15 - 350	PN 16 / 25	EN-JS1049	B1
		CHECKO®-V	10./12.	003	DN 15 - 300	PN 6 / 16	EN-JL1040	B10
			22./23.	003	DN 15 - 350	PN 16 / 25	EN-JS1049	B10
		Filtros	10./12.	050	DN 15 - 300	PN 6 / 16	EN-JL1040	B11
			22./23.	050	DN 15 - 350	PN 16 / 25	EN-JS1049	B11
		SAFE Válvulas de Seguridad para calefacción TÜV · SV ·688 · D/G/H	12.	903	DN 20 - 150	PN 16	EN-JL1040	C1
de Climatización		SAFE Válvulas de Seguridad- Vapor de baja presión TÜV · SV ·	12.	904	DN 20 - 150	PN 16	EN-JL1040	C1
Climati		SAFE-TC Válvulas de Seguridad para calefacción	25.	945	DN15 - 25 NPS 1/2" - 1"	PN 40	EN-JS1049	C1
		SAFE-TC Válvulas de Seguridad- Vapor de baja presión	25.	946	DN15 - 25 NPS 1/2" - 1"	PN 40	EN-JS1049	C1
Técnica		SAFE (Disparo Total/ Estándar) TÜV · SV · -663 · D/G/F	12.	901	DN 15 -150	PN 16	EN-JL1040	C1
		SAFE-P (Estándar) TÜV · SV · -811 · D/G/F	12.	921	DN 15 -100	PN 16	EN-JL1040	C1
		SAFE-TCP, SAFE-TCS (Estándar) TÜV · SV · -1041 · D/G/F	67.	961, 951	DN 15 - 25	PN 100	1.4581 / EN-JS1049	C1
		STEVI®H	10./12./72.	485, 486, 487, 488	DN 15 - 250 NPS 1/2" - 10"	PN 6 / 16	EN-JL1040 CC499K	АЗ
			72.	491, 492	DN 15 - 50	PN 16	CC499K	A3

No. No.			Se		Selección de po (otras bajo	os. aplicaciones demanda)					
	Agua caliente hasta 120°C	Agua Glicolada	Agua potable	Agua de piscina	Aire comprimidor	Vapor baja presión (màx. 1 barù)	Agua de acuerdo a VDI2035	Instalaciones de calefacción	Instal. de climatización y agua de refrigeración	Instal. de piscinas	Sistemas de aire comprimido
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	0	0	Ø	Ø	0	0	0
	0	0	0	0	0	Ø	0	0	0	0	0
	Ø	Ø	0	0	0	0	Ø	Ø	0	0	0
	0	0	0	0	0	Ø	0	0	0	0	0
				0						0	
	Ø	Ø	0	0	Ø	Ø	Ø	Ø	Ø	0	Ø
	Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0
	Ø	Ø	0	0	0	0	Ø	Ø	Ø	0	0

Verificar Resistencia (contactar fabricante para info, Verificar lista de resistencias (disponible en www.ari-armaturen.com). Edición 02/20 - Datos sujetos a cambios - Regularmente actualizados en www.ari-armaturen.com!

Algunas razones por las que confiar en las válvulas ARI

Válvulas Certificadas de acuerdo a la legislación vigente.

Proteja sus instalaciones ante incidentes y reclamaciones de daños a terceros con las compañías aseguradoras,

ino ponga en juego su seguridad!. Las Válvulas ARI se fabrican de acuerdo a los más exigentes estándares de calidad y poseen un gran reconocimiento internacional mediante decenas de homologaciones; PED 2014/68/EU Módulo H, Gas DVGW, Organismos Certificadores Lloyd's Register of Shipping, DNV, GL, BV, ABS, Vd Tüv entre otros muchos.

Trazabilidad en producción y homologación de las fundiciones.

Desde los inicios en las diversas fundiciones certificadas que ARI utiliza para la producción de sus válvulas, los números de coladas son identificables a través del proceso así como los números de serie de fabricación, todo el proceso es trazable válvula a válvula, parte a parte.

Servicio Garantía PLUS.

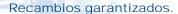
Las Válvulas de Fuelle ARI amplían la cobertura de garantía estándar a 24 meses para aportar más confort al usuario. (Ver condiciones de aplicación de garantía).

Excelencia de Diseño.

ARI fue pionera en el diseño e **innovación de las válvulas de fuelle hace más de 4 décadas**, el diseño avanza con la implementación de características genuinas frutos del I+D, fuelles protegidos, obturadores auto limpiantes, función cierre y retención y otros muchos más detalles. **Esta es una gran fortaleza de ARI.**

La más dilatada tradición de mercado, más de 45 años en España así como en los cinco continentes. **Millones de Válvulas en operación**.

Garantía de 5.000 ciclos mínimo en los Fuelles de alta calidad


Fuelles construidos en Europa por contratistas de reconocido prestigio, de doble y triple pared para incrementar la resistencia al flujo, los fuelles se sueldan al eje de la válvula mediante maquinaría automática empleando Helio, precisión y consistencia asegurada. El fuelle es la parte crítica de una válvula de globo con estanqueidad de fuelle y es donde más precaución se debe de adoptar.

Válvulas fabricadas en Alemania.

El proceso de fabricación se realiza 100% en la planta de Alemania con utilización de <u>fundición proveniente de la Unión Europea principalmente.</u>

Piezas de recambio garantizadas con números de serie y trazabilidad, disponibles en almacén en España para servicio inmediato, su planta no puede dejar de funcionar por la falta de disponibilidad de recambios.

Servicio Postventa en España.

El Servicio Postventa prestado en España va más allá que la venta de recambios, realizamos asistencia in situ, reparación en taller, reacondicionado y modificación de válvulas, ajustes, asistencia técnica de puesta en marcha, <u>la utilización de válvulas ARI supone unos derechos para el usuario adicionales.</u>

El respeto medio ambiental es otro talón de Aquiles en la fabricación de las válvulas ARI, se utilizan pinturas libres de silicona, las válvulas están homologadas de acuerdo al TA-Lüft — Normativa de emisiones atmosféricas — partes plásticas reciclables así como un proceso de fabricación en estricto cumplimiento de la Norma ISO:EN 14000.

Vista General de nuestros Certificados de Inspección, Organismos Clasificadores y Asociaciones Técnicas Legales

Homologaciones	
Directiva Europea de Equipos a Presión PED 2014/68/EU	Módulo H, H1, B+D
TÜV Nord DIN EN ISO 9001	Certificado-No. 44100137637
BV - Bureau Veritas Modo II inspección s/ DIN EN ISO 9001 (Francia)	 Compañía clasificación No. SMS II/ESN/481/1.C.O. aceptación general por agente del BV
DNV GL - Det Norske Veritas Germanischer Lloyd según DIN EN ISO 9001 (Noruega)	 Compañía clasificación MSA No. MSARC0000AG7 para pruebas independientes y certificación
LROS (LR) - Lloyd's Register of Shipping - Reglas Parte 5	Compañía clasificación QAM 034 para pruebas independientes y certificación
SELO (SQLO) China Licence (China)	 Compañía clasificación No. TSF700300-2019 para pruebas independientes y certificación (sólo Válvulas de Seguridad)
CCS - China Classification Society	 Compañía clasificación No. HB17Q00003 para pruebas independientes y certificación
ASME Code Section VIII-Division 1 (UV-stamp)	 Compañía clasificación No. 32,885 (sólo Válvulas de Seguridad)
Canada Registration	 Homologación Tipo (Válvulas de Seguridad con sello UV)
EAC (Rusia)	Compañía clasificación para pruebas independientes
RMROS (RS) - Russian Maritime Register of Shipping (Rusia)	 Compañía clasificación No. 18.00529.272 para pruebas independientes y certificación
RINA - Registro Italiano Navale	 Compañía clasificación No. 018/XG/010339 para pruebas independientes y certificación
TÜV - Technical Inspection Association según DIN EN 10204 - 3.1 QS-System = TRB 801 Nr. 45	Clasificación, pruebas y certificación por especialista de ARI
TÜV - Technical Inspection Association	 Homologación de soldadores AD-Hoja Técnica HP 0 para soldadura automática (AWH) + (HZH)
	 Aprobación de procedimientos de soldadura

Aprobaciones sobre pedido	
ABS - American Bureau of Shipping según DIN EN ISO 9001	Cada Pedido por agente ABS
IBR - Regulaciones Indias de Calderas	Cada Pedido
ISPESL (Italia)	Cada Pedido
RINA MIL (Italia)	 Cada Pedido - Las sub-siguientes pruebas e inspecciones se llevan a cabo en presencia de un inspector del RINA de acuerdo a las Normas del RINA Mil o cuando se requieran específicamente por el cliente.
Stoomwezen (Holanda)	 Ficha dimensional y certif. Tara TÜV para Válvulas de Seguridad
NK (Japón)	Cada Pedido
DIN EN 10204 - 3.1 y 3.2	Cada pedido por agente especialista
DIN EN 10204 - 3.2 (PED 2014/68/EU, Módulo G)	Cada pedido por agente especialista

Otras Certificaciones Bajo demanda

Su Distribuidor ARI

ACOM

ACOM VALVULAS Y SUMINISTROS, S.L. C/ Iribar 5, Nave F3, Pol. Neinor 20018 San Sebastián (Guipúzcoa) Telf.: 943428418 Fax.: 943425117

E-mail: ventas@acomvalvulas.com